Since a few years, high brilliance laser sources find their way into laser material processing. Laser micro processing by
applying high brilliance laser radiation up to 3 kW of continuous wave laser power in combination with ultrafast beam
deflection systems has been successfully demonstrated in 2008 for the first time. In the fields of laser welding, high brilliant laser radiation was mainly used for micro welding, but up to now the macro range is still insufficiently investigated. Hence, this study reports on detailed investigations of high speed laser welding of different steel grades, performed with a high power single mode fiber laser source. The laser beam was deflected relative to the sample by using both a fast galvanometer scanner system with f-theta focusing objective and a linear axis in combination with a welding optic, respectively. In the study, the mainly process influencing parameters such as laser power, welding speed, thickness of the metal sheets, angle of incidence and laser beam spot size were varied in a wide range. The weld seam quality was evaluated by structural analyses, static tensile tests and EDX measurements. Finally, the laser welding process has been optimized for different weld seam geometries, for example bead-on-plate welds and butt welds.
In laser ablation cutting, irradiation of high-intense laser beams causes ejection of molten and evaporated material out of the cutting zone as a result of high pressure gradients, induced by expanding plasma plumes. This paper investigates highspeed laser ablation cutting of industrial grade metal sheets using high-brilliant continuous wave fiber lasers with output powers up to 5 kW. The laser beam was deflected with scan speeds up to 2700 m/min utilizing both a fast galvanometer scan system and a polygon scan system. By sharp laser beam focusing using different objectives with focal lengths ranging between 160 mm and 500 mm, small laser spot diameters between 16.5 μm and 60 μm were obtained, respectively. As a result high peak intensities between 3*108 W/cm² and 2.5*109 W/cm² were irradiated on the sample surface, and cutting kerfs with a maximum depth of 1.4 mm have been produced.
In this study the impact of the processing parameters laser power, laser spot diameter, cutting speed, and number of scans on both the achievable cutting depth and the cutting edge quality was investigated. The ablation depths, the heights of the cutting burr, as well as the removed material volumes were evaluated by means of optical microscope images and cross section photographs. Finally highspeed laser ablation cutting was studied using an intensified ultra highspeed camera in order to get useful insights into the cutting process.
The demand of machine users towards the complete processing of a workpiece in one setting requires the use of different processing technologies in one machine. In the past years lasers have found new applications in production engineering as a tool for surface modification, cutting, welding and marking. By combination of conventional metal cutting technologies with laser processes in one machine, the complete processing of a workpiece with different technologies in one setting can be realized. The advantages are the processing in one setting and the reduction of material flow between the production machines. The possibility of integrating lasers for material processing in a cutting machine are examined. Processing technology as well as different constructive solutions depending on the type of machine used and integration method are evaluated. Parallel to this approach, examinations of the economy of these systems are carried out.
The demand of machine users towards the complete processing of a workpiece in one setting requires the use of different processing technologies in one machine. In the past years lasers have found new applications in production engineering as a tool for surface modification, cutting, welding and marking. By combination of conventional metal cutting technologies with laser processes in one machine, the complete processing of a workpiece with different technologies in one setting can be realized. The advantages are the processing in one setting and the reduction of material flow between the production machines. The possibility of integrating lasers for material processing in a cutting machine are examined. Processing technology as well as different constructive solutions depending on the type of machine used and integration method are evaluated. Parallel to this approach, examinations of the economy of these systems are carried out.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.