The L4n is a nanosecond-kilojoule laser beamline that delivers temporally shapeable nanosecond pulses at a maximum energy of 1.2 kJ. It was recently commissioned at ELI Beamlines and offers unique opportunities for high-pressure, high-energy-density physics, and laser-plasma interaction experiments, particularly due to its high repetition rate of up to 1 shot per minute. Compared to other kJ-class laser systems worldwide, which offer much lower shot rates, the L4n driven experiments will enable significant improvements in collecting data statistics. The results gathered during the first L4n commissioning campaigns, demonstrate the laser capability to deliver hundreds of joules every three minutes with excellent repeatability and clearly show its potential to make significant contributions to the field of high-energy density physics in the coming decades.
The limited aperture and damage threshold of the compressor gratings remains one of the bottlenecks in reaching higher peak powers for the current state-of-the-art laser systems. Object-image-grating self-tiling method provides a way how to double the effective aperture of compressor gratings by phasing them with perpendicularly positioned mirrors. This method is planned to be used in the main compressor for the L4 beamline in ELI Beamlines. A subaperture version of the main compressor was designed to test the feasibility of the objectimage- grating self-tiling method and to measure the temporal profile of the pulse throughout the amplification stages during the operation. The subaperture compressor was successfully implemented and temporal profile of the amplified pulse close to its transform limit was retrieved. The grating-mirror alignment was secured through the online measurement using an in-house developed Fizeau interferometer.
We report on the status of the re-commissioning of a high energy OPCPA laser system with programmable spectrum that serves as a frontend for a 10 PW laser at ELI-Beamlines. The OPCPA chain was developed by a consortium of National Energetics and Ekspla along with scientists of ELI-Beamlines.1 The laser system, consisting of three picosecond OPCPA stages, pulse cleaner, Offner stretcher, and 5 nanosecond OPCPA stages pumped by Nd:YAG lasers with programmable pulse shape (NL944, Ekspla), allows for precise spectral shaping while achieving high nonlinear conversion efficiency. Employing a subsequent Nd:glass power amplifiers (PA), the system was demonstrated to yield>1 kJ of energy, while maintaining broad spectrum of > 13 nm (FWHM). After recommissioning the OPCPA frontend in Dolní Břežany, an output energy of 4.3 J, flat beam-profile and good far-field quality has been demonstrated. The spectral shape has been optimized to support > 15 nm bandwidth and >1.5 kJ, consistent with 10 PW operation of the fully integrated laser system after compression.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.