J. Reijonen, N. Andresen, F. Gicquel, R. Gough, M. King, T. Kalvas, K.-N. Leung, T.-P. Lou, H. Vainionpaa, A. Antolak, D. Morse, B. Doyle, G. Miller, M. Piestrup
We report here on the development of neutron and photon sources for use in imaging and active interrogation
applications, where there is a growing urgency for more advanced interrogation tools. These devices include high yield
D-D, D-T and T-T fusion reaction based neutron generators and also low energy nuclear reaction based high-energy
gamma generators. One common feature in these various devices is the use of a high-efficiency, RF-induction discharge
ion source. This discharge method provides high plasma density for high output current, high atomic species from
molecular gases for high efficiency neutron or gamma generation and long lifetime. Predictable discharge characteristics
of these plasma generators allow accurate modeling for both the beam dynamics and for the heat loads at the target spot.
Current status of the neutron and gamma generator development with experimental data will be presented.
A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 13 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.
A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.