This paper discusses the conceptual development of a continuously monitored intelligent system for underground infrastructure. The proposed sensors are based on advanced coupling and refinement of several technologies: electrically conducting composite pipe (ECCP), electrochemical impedance spectroscopy (EIS) and time domain reflectometry (TDR). A significant benefit gleaned from the combination of these technologies is that the resulting system may be used on non-metallic, as well as, metallic pipes. In addition, the synergism of the technologies obtains the maximum information regarding defect location and characterization. The monitoring signal, waveguides, and damage sensor are also discussed, as well as, the data fusion, dynamic modeling and simulation requirements for the intelligent monitoring system.
The objectives of this research project are to identify, demonstrate, and validate intelligent systems for conveyance and storage infrastructure that will enable effective, affordable, real-time, remote measurement, analysis, and reporting of their structural health. Specifically, the project involves testing and validating smart pipes, which could indicate locations of structurally weak areas, i.e., where leaks are likely to occur, and the location of existing leaks for corrective action. During the initial phase of this project an extensive literature search was conducted to identify technologies that could potentially be used in intelligent systems. Although the search was primarily focused on new emerging smart technologies, consideration was also given to innovative uses of established structural monitoring or testing technologies. Four emerging technologies that can potentially locate structurally weak areas and predict incipient leaks were identified: electrically conducting composite pipes, electrochemistry-based corrosion sensors, instrumented cathodic protection, and distributed piezoelectric sensors. Also identified was an innovative use of acoustic emission techniques to track deterioration in pre-stressed concrete pipes by monitoring energy releases from breaking corroded pre-stressing wires. A review of each of these technologies is presented. During the next phase of the program one or more of these technologies will be tested and evaluated further.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.