Large-format infrared detectors are at the heart of major ground and space-based astronomical instruments, and the HgCdTe HxRG is the most widely used. The Near Infrared Spectrometer and Photometer (NISP) of the ESA’s Euclid mission launched in July 2023 hosts 16 H2RG detectors in the focal plane. Their performance relies heavily on the effect of image persistence, which results in residual images that can remain in the detector for a long time contaminating any subsequent observations. Deriving a precise model of image persistence is challenging due to the sensitivity of this effect to observation history going back hours or even days. Nevertheless, persistence removal is a critical part of image processing because it limits the accuracy of the derived cosmological parameters. We will present the empirical model of image persistence derived from ground characterization data, adapted to the Euclid observation sequence and compared with the data obtained during the in-orbit calibrations of the satellite.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to survey the atmospheres of known exoplanets through transit spectroscopy. The launch is scheduled for 2029. The scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband 0.5-7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully aluminium design to tolerate thermal variations to avoid impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m (the major axis), followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure hinges supports the primary mirror on one of the optical bench sides. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Critical Design Review; the fabrication of the structural and engineering models has started; some components, i.e., the primary mirror and its mounting system are undergoing further qualification activities. This paper aims to update the scientific community on the progress concerning the development, manufacturing and qualification activity of the ARIEL Telescope Assembly.
Ariel, part of the European Space Agency's (ESA) Cosmic Vision science program, is an innovative medium-class mission designed for atmospheric remote sensing of exoplanets. It is the first mission solely dedicated to investigating the atmospheres of more than 500 transiting exoplanets, ranging from gas giants to super-Earths, using a combination of transit photometry and spectroscopy. The mission's primary goal is to analyze these exoplanets' chemical composition and thermal structures, paving the way for large-scale, comparative planetology. Ariel is scheduled for launch in 2029 aboard Ariane 6.2. It will operate from an orbit around the Sun-Earth system's second Lagrange point. The mission has a nominal lifetime of four years, with the potential for a two-year extension. The spacecraft comprises two main modules: the Service Module (SVM) and the Payload Module (PLM). The SVM manages platform elements, including attitude control, power, data handling, and communication systems. The PLM incorporates an all-aluminium cryogenic telescope with two scientific instruments, the Ariel IR Spectrometer (AIRS) and the Fine Guidance System (FGS). The Operational Ground Segment consists of ground stations and the Mission Operation Centre (MOC) located at ESOC, responsible for the operations of the spacecraft and instruments. The Science Ground Segment (SGS) consists of the Science Operation Centre (SOC), located at ESAC, along with the Instrument Operations and Science Data Centre (IOSDC) provided by the Ariel Mission Consortium (AMC). The SGS will perform the science mission planning as well as processing of the data to generate the mission data products and provision of the Ariel mission archive for the user community. While ESA holds overall responsibility for Ariel, the Ariel Mission Consortium is responsible for the procurement of the payload units, as well as managing the IOSDC. This collaborative effort aims to unlock the mysteries of exoplanetary atmospheres and deepen our understanding of these distant worlds.
AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission adopted in November 2020 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4-year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over 1000 exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are exoplanets made of? How do planets and planetary systems form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering 1.95-3.90 µm (CH0) and 3.90-7.80 µm (CH1) wavelength ranges with prism-based dispersive elements producing spectra of low resolutions R>100 in CH0 and R>30 in CH1 on two independent detectors. The spectrometer is designed to provide a Nyquist-sampled spectrum in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermo-mechanical design of the instrument functioning in a 60 K environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled to below 42 K. This overview will present updated information of phase C studies, in particular on the assembly and testing of prototypes that are highly representative of the future engineering model that will be used as an instrument-level qualification model.
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Through the study of targets with a wide range of planetary parameters (mass, density, equilibrium temperature) and host star types the origin for the diversity observed in known exoplanets will be better understood. Ariel is an ESA Medium class science mission (M4) with a spacecraft bus developed by industry under contract to ESA, and a Payload provided by a consortium of national funding agencies in ESA member states, plus contributions from NASA, the CSA and JAXA. The payload is based on a 1-meter class telescope operated at below 60K, built all in Aluminium, which feeds two science instruments. A multi-channel photometer and low-resolution spectrometer instrument (the FGS, Fine Guidance System instrument) operating from 0.5 – 1.95 microns in wavelength provides both guidance information for stabilizing the spacecraft pointing as well as vital scientific information from spectroscopy in the near-infrared and photometry in the visible channels. The Ariel InfraRed Spectrometer (AIRS) instrument provides medium resolution spectroscopy from 1.95 – 7.8 microns wavelength coverage over two instrument channels. Supporting subsystems provide the necessary mechanical, thermal and electronics support to the cryogenic payload. This paper presents the overall picture of the payload for the Ariel mission. The payload tightly integrates the design and analysis of the various payload elements (including for example the integrated STOP analysis of the Telescope and Common Optics) in order to allow the exacting photometric stability requirements for the mission to be met. The Ariel payload has passed through the Preliminary Design Review (completed in Q2 2023) and is now developing and building prototype models of the Telescope, Instruments and Subsystems (details of which will be provided in other contributions to this conference). This paper will present the current status of the development work and outline the future plans to complete the build and verification of the integrated payload.
Euclid, the M2 mission of the ESA’s Cosmic Vision 2015-2025 program, aims to explore the Dark Universe by conducting a survey of approximately 14 000 deg2 and creating a 3D map of the observable Universe of around 1.5 billion galaxies up to redshift z ∼ 2. This mission uses two main cosmological probes: weak gravitational lensing and galaxy clustering, leveraging the high-resolution imaging capabilities of the Visual Imaging (VIS) instrument and the photometric and spectroscopic measurements of the Near Infrared Spectrometer and Photometer (NISP) instrument. This paper details some of the activities performed during the commissioning phase of the NISP instrument, following the launch of Euclid on July 1, 2023. In particular, we focus on the calibration of the NISP detectors’ baseline and on the performance of a parameter provided by the onboard data processing (called NISP Quality Factor, QF) in detecting the variability of the flux of cosmic rays hitting the NISP detectors. The NISP focal plane hosts sixteen Teledyne HAWAII-2RG (H2RG) detectors. The calibration of these detectors includes the baseline optimization, which optimizes the dynamic range and stability of the signal acquisition. Additionally, this paper investigates the impact of Solar proton flux on the NISP QF, particularly during periods of high Solar activity. Applying a selection criterion on the QF (called NISP QF Proxy), the excess counts are used to monitor the amount of charged particles hitting the NISP detectors. A good correlation was found between the Solar proton flux component above 30 MeV and the NISP QF Proxy, revealing that NISP detectors are not subject to the lower energy components, which are absorbed by the shielding provided by the spacecraft.
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets.. Ariel is an ESA Medium class science mission (M4) with a spacecraft bus developed by industry under contract to ESA, and a Payload provided by a consortium of national funding agencies in ESA member states, plus contributions from NASA, the CSA and JAXA. With the payload being provided by a consortium of scientific institutes and industrial partners funded through their respective European national funding agencies, and additional contributions provided by ESA, NASA, CSA and JAXA, the coordination and management of this team is vital to the successful delivery of the mission. This paper will describe how we have tailored the standard systems engineering approaches taken for space instrumentation and implemented these in the large consortium structure. This has been done in order to try to maximise the efficiency of the consortium work and to allow as close to a seamless flow of information as possible. We outline the key tools being deployed by the payload management, systems engineering and product assurance teams in the consortium.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully-aluminum design to tolerate thermal variations avoiding impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure-hinges supports the primary mirror on one side of the optical bench. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Preliminary Design Review to start the fabrication of the structural model; some components, i.e., the primary mirror, its mounting system and the refocusing mechanism, are undergoing further development activities to increase their readiness level. This paper describes the design and development of the ARIEL Telescope Assembly.
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments (see ref [1]). It operates in the near-IR spectral region (950-2020nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly, a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection system based on a mosaic of 16 H2RG with their front-end readout electronic. - a warm electronic system (290K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This paper presents: - the final architecture of the flight model instrument and subsystems - the performances and the ground calibration measurement done at NISP level and at Euclid Payload Module level at operational cold temperature.
Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de Liège in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1µm. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns.
ESA’s mission Euclid while undertaking its final integration stage is fully qualified. Euclid will perform an extra galactic survey (0<z<2) using visible and near-infrared light. To detect the infrared radiation is equipped with the Near Infrared Spectro-Photometer (NISP) instrument with a sensitivity in the 0.9-2 μm range. We present an illustration of the NISP Data Processing Unit’s Application Software, highlighting the experimental process to obtain the final parametrization of the on-board processing of data produced by an array of 16 Teledyne’s HAWAII-2RG (HgCdTe) - each of 2048×2048 px2, 0.3 arcsec/px, 18 μm pixel pitch; using data from the latest test campaigns done with the flight configuration hardware - complete optical system (Korsh anastigmat telescope), detectors array (0.56 deg2 firld of view) and readout systems (16 Digital Control Units and Sidecar ASICs). Also, we show the outstanding Spectrometric (using a Blue and two Red Grisms) and Photometric (using YE 0.92-1.15μm, JE 1.15-1.37μm, and HE 1.37-2.0 μm filters) performances of the NISP detector derived from the end-to-end payload module test campaign at FOCAL 5 - CSL; among them the Photometric Point Spread Function (PSF) determination, and the Spectroscopic dispersion verification. Also the performances of the onboard processing are presented. Then, we describe the solution of a major issue found during this final test phase that put NISP in the critical path. We will describe how the problem was eventually understood and solved thanks to an intensive coordinated effort of an independent review team (tiger team lead by ESA) and a team of NISP experts from the Euclid Consortium. An extended PLM level campaign in ambient in Liege and a dedicated test campaign conducted in Marseille on the NISP EQM model, with both industrial and managerial support, finally confirmed the correctness of the diagnosis of the problem. Finally, the Euclid’s survey is presented (14000 deg2 wide survey, and ∼40 deg2 deep-survey) as well as the global statistics for a mission lifetime of 6 years (∼1.5 billion Galaxy’s shapes, and ∼50 million Galaxy’s spectra).
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2021. Together with the near infrared imaging within the NISP instrument, it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2 . By combining 4 exposures with a total of 2260 sec, VIS will reach to deeper than mAB=24.5 (10s) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the period up to the beginning of the Flight Model programme
KEYWORDS: Systems engineering, Systems modeling, Space operations, Modeling, Galactic astronomy, Control systems, Systems engineering, Systems modeling, Data modeling, Data processing, Atrial fibrillation, Visualization
In the last years, the system engineering field is coming to terms with a paradigm change in the approach for complexity management. Different strategies have been proposed to cope with highly interrelated systems, system of systems and collaborative system engineering have been proposed and a significant effort is being invested into standardization and ontology definition. In particular, Model Based System Engineering (MBSE) intends to introduce methodologies for a systematic system definition, development, validation, deployment, operation and decommission, based on logical and visual relationship mapping, rather than traditional 'document based' information management.
The practical implementation in real large-scale projects is not uniform across fields. In space science missions, the usage has been limited to subsystems or sample projects with modeling being performed 'a-posteriori' in many instances. The main hurdle for the introduction of MBSE practices in new projects is still the difficulty to demonstrate their added value to a project and whether their benefit is commensurate with the level of effort required to put them in place.
In this paper we present the implemented Euclid system modeling activities, and an analysis of the benefits and limitations identified to support in particular requirement break-down and allocation, and verification planning at mission level.
KEYWORDS: Space operations, Galactic astronomy, Spectroscopy, Systems modeling, Databases, Point spread functions, Seaborgium, Data processing, Calibration, Telescopes
ESA's Dark Energy Mission Euclid will map the 3D matter distribution in our Universe using two Dark Energy probes: Weak Lensing (WL) and Galaxy Clustering (GC). The extreme accuracy required for both probes can only be achieved by observing from space in order to limit all observational biases in the measurements of the tracer galaxies. Weak Lensing requires an extremely high precision measurement of galaxy shapes realised with the Visual Imager (VIS) as well as photometric redshift measurements using near-infrared photometry provided by the Near Infrared Spectrometer Photometer (NISP). Galaxy Clustering requires accurate redshifts (Δz/(z+1)<0.1%) of galaxies to be obtained by the NISP Spectrometer.
Performance requirements on spacecraft, telescope assembly, scientific instruments and the ground data-processing have been carefully budgeted to meet the demanding top level science requirements. As part of the mission development, the verification of scientific performances needs mission-level end-to-end analyses in which the Euclid systems are modeled from as-designed to final as-built flight configurations. We present the plan to carry out end-to-end analysis coordinated by the ESA project team with the collaboration of the Euclid Consortium. The plan includes the definition of key performance parameters and their process of verification, the input and output identification and the management of applicable mission configurations in the parameter database.
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe
by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision
program with its launch planned for 2020 (ref [1]).
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900-
2000nm) as a photometer and spectrometer. The instrument is composed of:
- a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel
mechanism, a grism wheel mechanism, a calibration unit and a thermal control system
- a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a
mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem
structure
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the
spacecraft via a 1553 bus for command and control and via Spacewire links for science data
This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the
technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal
model (STM).
The challenging constraints imposed on the Euclid telescope imaging performances have driven the design,
manufacturing and characterisation of the multi-layers coatings of the dichroic. Indeed it was found that the coatings
layers thickness inhomogeneity will introduce a wavelength dependent phase-shift resulting in degradation of the image
quality of the telescope. Such changes must be characterized and/or simulated since they could be non-negligible
contributors to the scientific performance accuracy. Several papers on this topic can be found in literature, however the
results can not be applied directly to Euclid’s dichroic coatings. In particular an applicable model of the phase-shift
variation with the wavelength could not be found and was developed. The results achieved with the mathematical
model are compared to experimental results of tests performed on a development prototype of the Euclid’s dichroic.
KEYWORDS: Data processing, Galactic astronomy, Space operations, Telescopes, Point spread functions, K band, Sensors, Image quality, Data archive systems, Calibration
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the
nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of
structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak
gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and
Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic
redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The
Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the
conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In
particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives.
The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager
and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than
35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground
segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA
Science Data Centre.
KEYWORDS: Point spread functions, Space operations, Galactic astronomy, Space telescopes, Charge-coupled devices, Calibration, Staring arrays, Sensors, Camera shutters, Radiation effects
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program,
scheduled for launch in 2020. Together with the near infrared imaging within the NISP instrument, it forms the basis of
the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view
of ~0.5 deg2. By combining 4 exposures with a total of 2260 sec, VIS will reach to deeper than mAB=24.5 (10σ) for
sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly
controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear
from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In
addition, VIS will also provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area
covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid
Consortium during the period up to the Critical Design Review.
KEYWORDS: Space telescopes, Telescopes, Contamination, Mirrors, Sensors, Scattering, Optical components, Photometry, Contamination control, Picture Archiving and Communication System
In the Euclid mission the straylight has been identified at an early stage as the main driver for the final imaging quality of the telescope. The assessment by simulation of the final straylight in the focal plane of both instruments in Euclid’s payload have required a complex workflow involving all stakeholders in the mission, from industry to the scientific community. The straylight is defined as a Normalized Detector Irradiance (NDI) which is a convenient definition tool to separate the contributions of the telescope and of the instruments. The end-to-end straylight of the payload is then simply the sum of the NDIs of the telescope and of each instrument. The NDIs for both instruments are presented in this paper for photometry and spectrometry.
In June 2012, Euclid, ESA's Cosmology mission was approved for implementation. Afterwards the industrial contracts were signed for the payload module and the spacecraft prime, and the mission requirements consolidated. We present the status of the mission in the light of the design solutions adopted by the contractors. The performances of the spacecraft in its operation, the telescope assembly, the scientific instruments as well as the data-processing have been carefully budgeted to meet the demanding scientific requirements. We give an overview of the system and where necessary the key items for the interfaces between the subsystems.
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program,
scheduled for launch in 2020. Together with the near infrared imaging within the NISP instrument, it forms the basis of
the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view
of ~0.5 deg2. By combining 4 exposures with a total of 2260 sec, VIS will reach to V=24.5 (10σ) for sources with extent
~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point
spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion
galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also
provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area covering most of the
extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the period
up to the Preliminary Design Review.
The Euclid mission objective is to understand why the expansion of the Universe is accelerating by mapping the geometry of the dark Universe by
investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision
program with its launch planned for 2020.
The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2μm) as a
photometer and spectrometer. The instrument is composed of:
- a cold (135K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a
grism wheel mechanism, a calibration unit and a thermal control system
- a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K,
integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical
subsystem structure
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the
spacecraft via a 1553 bus for command and control and via Spacewire links for science data
This presentation describes the architecture of the instrument at the end of the phase B (Preliminary Design Review), the expected performance, the
technological key challenges and preliminary test results obtained on a detection system demonstration model.
Euclid is an European Space Agency (ESA) mission to map the geometry of the dark Universe. The mission will investigate the distance-redshift relationship and the evolution of cosmic structures. It will achieve this by measuring shapes and redshifts of galaxies and clusters of galaxies out to redshifts ~2, equivalent to 10 billion years back in time. Euclid will make use of two primary cosmological probes, in a wide survey over the full extragalactic sky : the Weak Gravitational Lensing (WL) and Baryon Acoustic Oscillations (BAO). The main goal of the Euclid payload module (PLM) is to provide high quality imaging of galaxies and accurate measurement (less than 0.1%) of galaxies redshift over a large field of view (FoV). The present paper focuses on the telescope of the PLM excluding the instruments. We present a brief introduction to the Euclid PLM system and will report how the constraints of each instrument have driven the definition of the telescope-to-instrument optical interfaces. Furthermore we introduce the description of the telescope optical characteristics and report its nominal performances. Finally, the technical challenges to be faced by ESA’s industrial partners are underlined.
The focal plane array of the Euclid VIS instrument comprises 36 large area, back-illuminated, red-enhanced CCD detectors (designated CCD 273). These CCDs were specified by the Euclid VIS instrument team in close collaboration with ESA and e2v technologies. Prototypes were fabricated and tested through an ESA pre-development activity and the contract to qualify and manufacture flight CCDs is now underway. This paper describes the CCD requirements, the design (and design drivers) for the CCD and package, the current status of the CCD production programme and a summary of key performance measurements.
Guido De Marchi, Stephan Birkmann, Torsten Böker, Pierre Ferruit, Giovanna Giardino, Marco Sirianni, Martin Stuhlinger, Maurice te Plate, Jean-Christophe Salvignol, Reiner Barho, Xavier Gnata, Robert Lemke, Michel Kosse, Peter Mosner
We present a detailed analysis of measurements collected during the first ground-based cryogenic calibration campaign
of NIRSpec, the Near-Infrared Spectrograph for the James Webb Space Telescope (JWST). In this paper we concentrate
on the performances of the NIRSpec grating wheel, showing that the magneto-resistive position sensors installed on the
wheel provide very accurate information on the position of the wheel itself, thereby enabling an efficient acquisition of
the science targets and a very accurate extraction and calibration of their spectra.
Pierre Ferruit, Giorgio Bagnasco, Reiner Barho, Stephan Birkmann, Torsten Böker, Guido De Marchi, Bernhard Dorner, Ralf Ehrenwinkler, Massimo Falcolini, Giovanna Giardino, Xavier Gnata, Karl Honnen, Peter Jakobsen, Peter Jensen, Manfred Kolm, Hans-Ulrich Maier, Ralf Maurer, Markus Melf, Peter Mosner, Peter Rumler, Jean-Christophe Salvignol, Marco Sirianni, Paolo Strada, Maurice te Plate, Thomas Wettemann
The Near-Infrared Spectrograph NIRSpec is one of the four instruments of the James Webb Space Telescope (JWST).
NIRSpec will cover the 0.6-5.0 micron range and will be capable of obtaining spectra of more than 100 objects
simultaneously in its multi-object spectroscopy (MOS) mode. It also features a set of slits and an aperture for high
contrast spectroscopy of individual sources, as well as an integral-field unit (IFU) for 3D spectroscopy. We will first
show how these capabilities are linked to the four main JWST scientific themes. We will then give an overview of the
NIRpec modes and spectral configurations with an emphasis on the layout of the field of view and of the spectra. Last,
we will provide an update on the status of the instrument.
The Near Infrared Spectrograph (NIRSpec) is one of the four science instruments aboard the James Webb Space
Telescope (JWST) scheduled for launch in 2014. NIRSpec is sensitive in the wavelength range from ~ 0.6 to
5.0 μm and will be capable of obtaining spectra of more than a 100 objects simultaneously, as well as fixed slit
high contrast spectroscopy of individual sources. It also features an integral field unit for 3D spectroscopy. The
key scientific objectives of the instrument include studies of star formation and chemical abundances of young
distant galaxies and tracing the creation of the chemical elements back in time. In this paper, we present the
status of the NIRSpec instrument as it is currently being prepared for its extensive ground calibration campaign
later in 2010.
The Grating and Filter Wheel Mechanisms of the JWST NIRSpec instrument allow for reconfiguration of the
spectrograph in space in a number of NIR sub-bands and spectral resolutions. Challenging requirements need to be met
simultaneously including high launch loads, the large temperature shift to cryo-space, high position repeatability and
minimum deformation of the mounted optics. The design concept of the NIRSpec wheel mechanisms is based on the
ISOPHOT Filter Wheels but with significant enhancements to support much larger optics. A well-balanced set of design
parameters was to be found and a considerable effort was spent to adjust the hardware within narrow tolerances.
KEYWORDS: Mirrors, Sensors, Camera shutters, James Webb Space Telescope, Silicon carbide, Space telescopes, Observatories, Optical fabrication, Cameras, Cryogenics
The James Webb Space Telescope (JWST) mission is a collaborative project between the National Aeronautics and
Space Administration (NASA), the European Space Agency (ESA) and the Canadian Space Agency (CSA) and is
considered as the successor to the Hubble Space Telescope (HST). The European contribution consists in providing the
Ariane 5 launcher and two out of the four instruments: a combined mid-infrared camera/spectrograph (MIRI) and a near
infrared spectrograph (NIRSpec). This article will address the mechanical aspects of NIRSpec by providing an overview
of the design drivers and the related solutions for the structure, the thermal design and the mechanisms so as to achieve
the required stringent optical performances. The industrial set-up and the project development status will also be
presented.
A novel cryogenic refocusing mechanism (RMA) has been designed by Galileo Avionica (GA) for the Near Infra-Red
Spectrograph (NIRSpec), one of the instruments of the James Webb Space Telescope (JWST). The RMA shall correct
possible in orbit focal length variations by a rigid translation of a set of two mirrors in a 6 mm range, with an accuracy of
50 microns and 15 microns step size. The RMA development has been driven by the operation at 30K temperature while
being still fully functional at room temperature, by the need to incorporate two mirrors with demanding quality as part of
the mechanism and by tight envelope constraints.
This paper reports details of the RMA opto-mechanical design and analysis and about the dedicated optical set-up
developed for its verification.
The James Webb Space Telescope (JWST) mission is a collaborative project between the National Aeronautics and
Space Administration (NASA), the European Space Agency (ESA) and the Canadian Space Agency (CSA).
JWST is considered the successor to the Hubble Space Telescope (HST) and although its design and science objectives
are quite different, JWST is expected to yield equivalently astonishing breakthroughs in infrared space science.
Due to be launched in 2013 from the French Guiana, the JWST observatory will be placed in an orbit around the anti-
Sun Earth-Sun Lagrangian point, L2, by an Ariane 5 launcher, provided by ESA.
The payload on board the JWST observatory consists of four main scientific instruments: a near-infrared camera
(NIRCam), a combined mid-infrared camera/spectrograph (MIRI), a near-infrared tunable filter (TFI) and a nearinfrared
spectrograph (NIRSpec). The instrument suite is completed by a Fine Guidance Sensor (FGS).
Besides the provision of the Ariane 5 launcher, ESA, with EADS Astrium GmbH (D) as Prime Contractor, is fully
responsible for the funding and the furnishing of NIRSpec and, at the same time, for approximately half of MIRI costs
through special contributions from the ESA member states.
NIRSpec is a multi-object, spectrograph capable of measuring the spectra of about 100 objects simultaneously at low
(R=100), medium (R=1000), and high (R=2700) resolutions over the wavelength range between 0.6 micron and 5.0
micron. In this article we provide a general overview of its main design features and performances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.