In radar imaging, for example Inverse Synthetic Aperture Radar (ISAR) imaging, a target can be modeled as a collection
of scattering centers in the image domain. A method to improve radar image quality through clutter suppression and
localization of scattering centers is presented in this paper. The approach is based on localizing the scattering centers by
enforcing sparsity constraints through random compressive sampling of the measured data. Sparsity constraint ratio is
chosen as a design parameter to achieve the objective. Results show that significant clutter reduction and improvement in
localization of scattering centers are achieved at an optimum sparsity constraint ratio.
Multiple scattering and random interactions among scattering elements and between the scatterers and the background
adversely affect the radar image quality and target detection capability. In the radar image, multiple scattering and
interactions appear as non-physical scattering centers. A method to improve the performance of radar imaging systems
by extracting independent scattering centers is investigated in this study. Independent Component Analysis (ICA) is
applied to returns of a radar system to extract independent scattering centers based on their non-Gaussianity. As an
example, this method of target extraction is implemented in inverse synthetic aperture radar (ISAR) imaging of closely-spaced
targets. Results of this study show that the application of this radar signal processing technique has allowed
extraction of independent scattering centers which are needed in target detection and identification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.