The growth conditions and lasing characteristics of the optically barrier-pumped GaSb - based semiconductor disk laser (SDL) emitting near 2 μm in an external cavity configuration are reported. It is made of a GaSb/AlAsSb Bragg reflector, a Ga0.8In0.2Sb/GaSb multi quantum-well active region and an Al0.8Ga0.2As0.03Sb0.97 window layer. Using an intracavity SiC heat spreader, a cw output power in excess of 1.12 W has been achieved at a heat sink temperature of 0 °C.
The semiconductor epitaxial design and lasing characteristics of an optically barrier-pumped GaSb -based semiconductor disk laser (SDL) emitting at 2.0 μm optimized for resonant optical barrier pumping around 1470 nm are presented. Compared to conventional barrier-pumped devices with pump wavelength of 980nm, the novel barrier-pumped device with the smaller quantum deficit reaches a significantly higher power efficiency, and thus a higher output power at a given pump power, due to the lesser internal heat generation. Using an intracavity SiC heat spreader, a cw output power in excess of 300 mW has been achieved at a heat sink temperature of +15 °C, and still more than 500 mW at +10 °C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.