LiDAR-based SLAM Systems are widely applied in robotics for their accuracy and robustness. However, accurate localization in small-scale indoor scenes is challenging since the point cloud features of the sparse line scan LiDAR cannot always provide sufficient space constraints. In our experiments, even state-of-the-art methods have heavy odometry drift. In this paper, to address this problem, we propose a method that can improve the performance of existing algorithms in small-scale indoor scenes. By installing a LiDAR perpendicular to the existing LiDAR, our method enhances the constraint in the vertical direction. We test our method on LOAM and FAST-LIO2, and the results show significant improvements on our own collected datasets. In addition, to accurately merge the two LiDAR’s cloud points, we propose a high-accuracy dual-LiDAR calibration method with rotation and translation errors less than 0.005 rad and 0.01 m respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.