Defect detection is of great significance for assessing and controlling the quality of fabrics. However, most traditional detection processes rely on manual visual inspection, resulting in low detection efficiency, ambiguous detection results, and high monitoring costs. In this work, a centroid warp-weft graph-based (C2WG) statistical analysis method is proposed for the detection and evaluation of fabric defects. To reflect the fabric texture variation, the C2WG method is first proposed to find abnormal texture centers. Subsequently, by dual monitoring of local slope and curvature, the location of the abnormal centroid can be accurately determined as texture defects and displayed. Finally, the defect evaluation results under different detection accuracy are obtained by changing the monitoring threshold. Consequently, the defects are classified into different classes. A case study on an industrial design fabric product validates the good performance of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.