KEYWORDS: Frequency shift keying, Interference (communication), Four wave mixing, Dense wavelength division multiplexing, Modulation, Birefringence, Picosecond phenomena, Systems modeling, Signal to noise ratio, Optical engineering
We describe a semi-analytic model used to deterministically and exactly calculate the variance of degenerate and nondegenerate four-wave mixing (FWM) noises for 128×10 Gb/s return-to-zero frequency-shift-keying dispersion-managed dense-wavelength-division-multiplexing system. The analytic model includes various important light-propagating effects such as walk-off between channels, oscillation of pulse width with transmission distance, and stochastic variation of birefringence strength and orientation along fiber. The achievable maximum Q -factor and allowed maximum input powers for different dispersion management schemes and transmission distances are shown including overall FWM noises from different channel combinations, signal-amplified spontaneous emission (ASE) beat noise, and others. Achievable maximum transmission distances for such systems are studied. The upper limit of local dispersion of the dispersion map is discussed. In the case of allowed maximum input powers for the system, the variances of overall FWM noise are observed to be about half of those of signal-ASE beat noise when averaged for different transmission distances. It is found that for high-local dispersion, when transmission distance is long enough, effect of nondegenerate FWM noise, compared with degenerate FWM noise, can be ignored.
The performance of long-haul dispersion managed DWDM soliton systems is systematically studied. It is found that the values of Q factor and optimal window for some channels are very different. The optimized bandwidth of inserted optical filter and dispersion map are suggested.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.