When a liquid droplet is filled in the hole of a dielectric elastomer (DE) film, a liquid lens is prepared. By applying a DC voltage to the DE film, the liquid lens can be actuated. As a comparison, two liquid lenses, one in a millimeter scale and the other in a submillimeter scale, are demonstrated. In a relaxed state, the focal length of each liquid lens is the longest. In an actuated state, the diameter of each lens is reduced. As a result, their focal length is tuned. Here, the DE film functions as an actuator. Due to the biconvex shape and smooth liquid surface, each liquid lens can provide good optical performance. They also possess the merits of simple fabrication, compact structure, and easy operation. In contrast to the bigger liquid lens, the smaller one can present a better mechanical stability without the concern of the gravitational effect.
By filling a liquid droplet in the hole of a dielectric elastomer (DE) film directly, we prepared two small liquid lenses. The aperture of one lens is macro size and the other is micro size. The liquid droplet in each hole of the DE film exhibits a lens character due to its biconvex shape. In relaxed state, the focal length of each liquid droplet is the longest. When a sufficiently high DC voltage is applied, the diameter of each DE hole is decreased by the generated Maxwell stress, causing the curvature of its droplet to increase. As a result, the focal length of each lens is reduced. Here the DE film functions as an actuator. In contrast to previous approaches, our miniature liquid lenses possess the advantages of simple fabrication, fast response time (~ 540 ms), and high optical performance (~ 114 lp/mm). Moreover, the micro-sized liquid lens presents good mechanical stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.