The laser-matter interaction and bur phenomena associated with lase processing remain unclear, slowing its process development and optimization. Here, through in situ CCD imaging and mathematical model, we revealed the underlying physical mechanism of bur formation during millisecond pulsed laser processing metallic material. The result shows that the laser-induced gas/vapour jet promotes the flow of melt, and the dynamic behavior of up flow melt along the hole wall is responsible for bur formation; another more, the oxidation phenomena of metallic material have positively influence in bur diminution.
A 2D numerical model is developed to investigate the transient dynamics of molten pool and thus the bur formation mechanism in millisecond pulsed laser drilling process. The model features the utilization of the sharp interface method for accurate consideration of the complex boundary conditions on the hole wall and a comprehensive hydrodynamic calculation for both the gaseous and liquid phases. The model gives good prediction of the bur phenomena, and more importantly, provides detailed information regarding the multi-phase interaction and its effects on hole dynamics, also on the bur formation. It is shown that different substrate can cause different coupling effects between the vapor plume and molten pool and hence produce holes of different shapes. The model gives a basic study of the bur formation during the ablation process of different metals and shows a virtual technique for the visual of the movement of melt and vapor. And the obtained results show good qualitative correspondence with experimental data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.