This paper provides an overview of the thermal stability of volume nanogratings (NGs) inscribed in more than 20 laboratory and commercial oxide glasses using femtosecond laser pulses. The role of glass composition and its viscosity-temperature dependence are particularly investigated. Other parameters, such as nanostructure morphology (e.g., porosity size) can play a role in it. Although it has become established that high viscosity glasses typically yield improved thermal stability, recent results highlight deviations from this trend. This is particularly pronounced in low SiO2 containing glasses with large Al2O3 content (typ. > 50 mol%), where their NGs thermal stability is comparatively higher than what is known for pure silica, which may prove useful for optical devices operating in extreme environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.