Both intensity and phase information of images have been the most important similarity measures in solving the general stereo matching problem. Intensity contains most of the imaging information of the scene/object, yet the phase information could reflect the local structure of images, which is more robust than the grayscale value. Plenty of work has been done in intensity-based or phase-based stereo matching methods. However, neither of them could work well enough when process images were taken under varied illuminations. A robust depth recovery method by making use of both intensity and phase information of stereo images properly is proposed. Firstly, 2D signal analysis is conducted by using the multiscale monogenic wavelet transform, from which local phase and intensity amplitude information are extracted into different scales. Secondly, disparity maps are estimated in different scales based on the intensity information. Thirdly, the optimal disparity is obtained by weighted-combining the disparity maps in different scales. The weighted coefficients are computed by making use of the phase information. Extensive experimental evaluation demonstrates the benefits of the proposed method.
In this paper, the applications of polarimetric imaging for rust preventing oil film detection and characterization are discussed. A three-channel polarimetric imaging system is introduced, which can obtained the degree of linear polarization images at one shoot. The experimental results show that the proposed three-channel polarimetric imaging system can identify the oil film on the steel strip quickly and effectively, which is a fast and reliable detection method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.