The intraoperative diagnosis of brain tumors and the timely evaluation of biomarkers that can guide therapy are hindered by the paucity of rapid adjunctive studies. This study evaluates the feasibility and specificity of using quantum dot-labeled antibodies for rapid visualization of epidermal growth factor receptor (EGFR) expression in human brain tumor cells and in surgical frozen section slides of glioma tissue. Streptavidin-coated quantum dots (QDs) were conjugated to anti-EGFR antibodies and incubated with target cultured tumor cells and tissues. The experiments were conducted first in human glioma tumor cell lines with elevated levels of EGFR expression (SKMG-3, U87) and then in frozen tissue sections of glioblastoma multiforme and of oligodendroglioma. The bioconjugated QDs used in the study were found to bind selectively to brain tumor cells expressing EGFR. QD complexed quickly to the cell membrane (less than 15 min), and binding was highly specific and depended on the expression level of EGFR on the cell membrane. Tissue experiments showed that only tumor specimens expressing EGFR were labeled in less than 30 min by QD complexes. These findings demonstrate that QD-labeled antibodies can provide a quick and accurate method for characterizing the presence or absence of a specific predictive biomarker.
We report the design, integration, and validation of a fluorescence microscopy system for imaging of electroperturbation—the effects of nanosecond, megavolt-per-meter pulsed electric fields on biological cells and tissues. Such effects have potential applications in cancer therapy, gene regulation, and biophysical research by noninvasively disrupting intracellular compartments and inducing apoptosis in malignant cells. As the primary observing platform, an epifluorescence microscope integrating a nanosecond high-voltage pulser and a micrometer electrode chamber enable in situ imaging of the intracellular processes triggered by high electric fields. Using specific fluorescence molecular probes, the dynamic biological responses of Jurkat T lymphocytes to nanosecond electric pulses (nanoelectropulses) are studied with this system, including calcium bursts, the polarized translocation of phosphatidylserine (PS), and nuclear enlargement and chromatin/DNA structural changes.
In vivo fluorescent spectroscopy and imaging using endogenous and exogenous sources of contrast can provide new approaches for enhanced demarcation of brain tumor margins and infiltration. Quantum dots (QDs), nanometer-size fluorescent probes, represent excellent contrast agents for biomedical imaging due to their broader excitation spectrum, narrower emission spectra, and higher sensitivity and stability. The epidermal growth factor receptor (EGFR) is implicated in the development and progression of a number of human solid tumors including brain tumors and thus a potential target for brain tumor diagnosis. In this study, we investigate the up-take of ODs by brain tumor cells and the potential use of EGFR-targeted QDs for enhanced optical imaging of brain tumors. We conducted fluorescence microscopy studies of the up-take mechanism of the anti-EGFR-ODs complexes by Human U87, and SKMG-3 glioblastoma cells. Our preliminary results show that QDs can enter into glioma cells through anti-EGFR mediated endocytosis, suggesting that these nano-size particles can tag brain tumor cells.
In this communication, we report the imaging of living glioma cells using fluorescence lifetime imaging (FLIM) technique. The growing interests in developing novel techniques for diagnosis and minimally invasive therapy of brain tumor have led to microscopic studies of subcellular structures and intracellular processes in glioma cells. Fluorescence microscopy has been used with a number of exogenous molecular probes specific for certain intracellular structures such as mitochondria, peripheral benzodiazepine receptor (PBR), and calcium concentration. When probes with overlapping emission spectra being used, separate samples are required to image each probe individually under conventional fluorescence microscopy. We have developed a wide-field FLIM microscope that uses fluorescence lifetime as an additional contrast for resolving multiple markers in the same essay. The FLIM microscope consists of a violet diode laser and a nitrogen-pumped dye laser to provide tunable sub-nanosecond excitation from UV to NIR. The detection system is based on a time-gated ICCD camera with minimum 80 ps gate width. The performance of the system was evaluated using fluorescence dyes with reported lifetime values. Living rat glioma C6 cells were stained with JC-1 and Rhodamine 123. FLIM images were acquired and their lifetimes in living cells were found in good agreements with values measured in solutions by a time-domain fluorescence spectrometer. These results indicate that imaging of glioma cells using FLIM can resolve multiple spectrally-overlapping probes and provide quantitative functional information about the intracellular environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.