In this paper, we develop a novel method for blind image quality assessment (BIQA) based on image complete pixel level information. First, traditional rotation invariant uniform local binary pattern (LBP) histogram is extracted from grayscale image as perceptual quality aware feature. Second, except for the signs of local pixel differences, the magnitudes of local pixel differences in grayscale image are also encoded by LBP, and the joint histogram between the signs and magnitudes of local pixel differences is also calculated as part of the perceptual feature. Finally, the support vector regression (SVR) is utilized to learn the mapping between the combined perceptual feature and human opinion scores. Experimental results show that the proposed method is highly correlated with human opinion scores and achieves competitive performance with state-of-the-art methods for quality evaluation and distortion classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.