Deflectometry is a slope-based technique to measure specular surfaces. Modal reconstruction methods fit the surface shape with a certain mathematical model based on expansion polynomials and their coefficients. The coefficients are obtained by linear equations, which are consisted of the gradient of the polynomials and the measured slope data. Nevertheless, computing the large linear equations is time-consuming work and the noises and outliers will decrease the reconstruction accuracy. This paper uses the Chebyshev polynomials as the basis set and proposes a modal reconstruction method based on the deep convolutional neural network to directly output the corresponding Chebyshev coefficients. Compared with the conventional modal reconstruction method, the results demonstrate that the reconstruction accuracy and the computational efficiency are improved effectively using the proposed method.
Defect detection for specular surfaces plays a vital role in precision manufacturing. However, traditional defect detection methods are unsuitable for specular surfaces because of their specular reflection property. The defect detection on specular surfaces is usually performed by inspectors, which makes the defect detection a time-consuming and unstable task. Deflectometry has been widely used in defect detection for specular surfaces combined with machine learning. Nevertheless, conventional deflectometry methods use the local curvature deviation map based on the unwrapped phase, which can only detect geometrical defects. Moreover, hand-crafted features need to be defined for each specific task. We present a method based on deflectometry and deep learning. Deflectometry provides the input images for the network, and the deep learning network completes the identification and location of defects. In deflectometry, the proposed method uses the light intensity contrast map to replace the local curvature map, which can detect both geometrical and textural defects. Based on conventional networks, depthwise separable convolution kernel is applied to reduce parameters, and residual convolution block is utilized to alleviate vanishing or exploding gradients. A subnet for feature aggregation is used to obtain multiscale information of defect features. Performance evaluation based on experiment results proved the effectiveness of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.