Vortex beams that carry orbital angular momentum (OAM) have garnered significant attention, as they bring the degree of freedom of OAM to modern optical communication, beyond the traditional degrees of freedom such as amplitude, phase and polarization. Meanwhile, metasurfaces composed of ultra-thin layers of subwavelength structures have also been utilized for light manipulation. Nevertheless, the combination of these two concepts has not been explored in the form of microring resonator-based light emitter. In this work, we demonstrate a Si-based, passive, conjugate symmetrybreaking emitter in numerical simulation. This broken conjugate symmetry enables the emitter to generate OAMs with different topological charges, when it is driven at two opposite input directions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.