This study aimed to investigate the VX2 tumor growth in rabbit liver using T2-weighted imaging (T2WI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Five New Zealand white (NZW) rabbits were implanted with VX2 cell suspension in liver. Afterwards, MRI was performed 7, 14, 21 and 28 days after tumor implantation. A 1.5T clinical MRI scanner was used to perform scans. After 3-plane localizer, T1 weighted imaging (T1WI), T2WI, and DCE-MRI using a three-dimensional gradient echo pulse sequence was performed. After 4 pre-contrast images were acquired, each rabbit was injected i.v. with 0.1 mmol/kg Dotarem. The total scan time after Dotarem administration was 30 minutes. All acquired images were analyzed using ImageJ software. Several regions of interest were selected from the rims of tumor, liver, and muscle. The enhancement ratio (ER) was calculated by dividing the MR signal after Dotarem injection to the MR signal before Dotarem injection. The maximum ER (ER_max) value of tumor for each rabbit was observed right after the Dotarem injection. The T2W MR signal intensities (T2W_SI) and the ER_max values obtained 7, 14, 21 and 28 days after tumor implantation were analyzed with a linear regression algorithm. Both T2W_SI and ER_max of tumors increased with time. The changes for T2W_SI and ER_max of tumors between 7 and 28 days after tumor implantation were 32.66% and 18.14%, respectively. T2W_SI is more sensitive than ER_max for monitoring the growth of VX2 tumor in a rabbit liver model.
The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.