The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy & Astrophysics and is NASA’s next astrophysics flagship observatory. Launching no earlier than 2026, it will conduct several wide field and time domain surveys, as well as conduct an exoplanet census. Roman’s large field of view, agile survey capabilities, and excellent stability enable these objectives, yet present unique engineering and test challenges. Roman comprises a Spacecraft and the Integrated Payload Assembly (IPA), the latter of which includes the Optical Telescope Assembly (OTA), the primary science Wide Field Instrument, a technology demonstration Coronagraph Instrument, and the Instrument Carrier, which meters the OTA to each instrument. The Spacecraft supports the IPA and includes the Bus, Solar Array Sun Shield, Outer Barrel Assembly, and Deployable Aperture Cover. It provides all required power, attitude control, communications, data storage, and stable thermal control functions as well as shading and straylight protection across the entire field of regard. This paper presents the Observatory as it begins integration and test, as well as describes key test and verification activities.
The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy and Astrophysics and is NASA’s next astrophysics flagship Observatory. Launching no earlier than 2026, it will conduct several wide field and time domain surveys, as well as conduct an exoplanet census. Roman’s large field of view, agile survey capabilities, and excellent stability enable these objectives, yet present unique engineering and test challenges. The Roman Observatory comprises a Spacecraft and the Integrated Payload Assembly (IPA), the latter of which includes the Optical Telescope Assembly (OTA), the primary science Wide Field Instrument, a technology demonstration Coronagraph Instrument, and the Instrument Carrier, which meters the OTA to each instrument. The Spacecraft supports the IPA and includes the Bus, Solar Array Sun Shield, Outer Barrel Assembly, and Deployable Aperture Cover. It provides all required power, command handling, attitude control, communications, data storage, and stable thermal control functions as well as shading and straylight protection across the entire field of regard. This paper presents the Observatory as it begins integration and test, as well as describes key test and verification activities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.