In order to fulfill the potential of fingerprint templates as the basis for authentication schemes, one needs to design a hash function for fingerprints that achieves acceptable matching accuracy and simultaneously has provable security guarantees, especially for parameter regimes that are needed to match fingerprints in practice. While existing matching algorithms can achieve impressive matching accuracy, they have no security guarantees. On the other hand, provable secure hash functions have bad matching accuracy and/or do not guarantee security when parameters are set to practical values. In this work, we present a secure hash function that has the best known tradeoff between security guarantees and matching accuracy. At a high level, our hash function is simple: we apply an off-the shelf hash function on certain collections of minutia points (in particular, triplets of minutia triangles"). However, to realize the potential of this scheme, we have to overcome certain theoretical and practical hurdles. In addition to the novel idea of combining clustering ideas from matching algorithms with ideas from the provable security of hash functions, we also apply an intermediate translation-invariant but rotation-variant map to the minutia points before applying the hash function. This latter idea helps improve the tradeoff between matching accuracy and matching efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.