Devon Island, in the Canadian High Arctic (75°22’N, 89°41’W), is the largest uninhabited island on the planet. The climate is that of a polar desert; it is cold, dry, dusty, rocky, and almost void of any vegetation. The eastern part of the island is still covered by an ice cap, a remnant of the Inuitian Ice Sheet system that covered the bulk of the area during the last Glacial Maximum 8 000-10 000 years ago.. The island is rich in well-preserved geology, relatively free of erosion. The feature of highest scientific interest on Devon Island is the ~23-million-year-old (Miocene), ~24 km diameter Haughton impact structure.. There are few other craters on this planet as well preserved and exposed as Haughton, mainly due to the unique climate that slows down erosion common on the rest of the planet.The NASA Haughton-Mars project is an international planetary analog research project headquartered at NASA Ames Research Centre and managed by the SETI Institute. The lidar work described in this work is a collaborative activity between the SETI Institute, the University of Guelph, the University of New Brunswick, Optech Inc., and the Canadian Space Agency. Field activities were conducted under the auspices of the NASA HMP and of the CSA. Specific sites of geological interest within Haughton impact structure were imaged using an Optech Ilris 3-d ground-surveying unit. This very high-resolution, 3-dimensional data allows for the field geologist to "re-visit" a field site well after the field season has finished. In this work, we will present the results of 3-dimensional scans of an ejecta block and of impact-generated rock formations that contribute to furthering our understanding of impact cratering, a fundamental and universal process of planetary formation and evolution, and to studies of the erosional history of Haughton Crater and surrounding terrain on Devon Island. We will demonstrate how using this tool in the field can increase safety and allow for precise measurements to be made after the field season is completed.
KEYWORDS: LIDAR, Laser systems engineering, Range imaging, Imaging systems, Reflectivity, Space operations, Inspection, Laser scanners, 3D scanning, Clouds
A long-range scanning laser range imaging system designed for 3D imaging applications is presented. The system will be compact, lightweight and low power: ideally suited for remote and robotic applications. It will feature a fully-programmable scanner with a wide field of regard, and a precise time-of-flight laser range measurement system that will provide high-speed, accurate point-cloud data from very short to very long ranges. The potential applications of this technology to be briefly discussed here, both terrestrial and in space, are numerous. They include: robotic vision; autonomous navigation and guidance; mapping and surveying; on-orbit rendezvous and docking; planetary landing; visual geology; and rover navigation. This paper will discuss the physical characteristics of the system as well as the performance of the lidar itself. Test results and some sample imagery will be presented. The paper will also discuss some of the applications for which the system may be suited.
This paper is presented to give a general description of the ORACLE project and of the technology development results obtained to date. ORACLE is a feasibility study of a fully automated differential absorption lidar for global measurements of tropospheric and stratospheric ozone and aerosols with high vertical and horizontal resolution. The proposed program includes both novel technology demonstrations and obtaining scientific data from spacecraft. These data are needed to address key issues in atmospheric research including the depletion of stratospheric ozone, global warming, atmospheric transport and dynamics, tropospheric ozone budgets, atmospheric chemistry, and the atmospheric impact of hazards. Only a space-based lidar system can provide the required spatial resolution for ozone and aerosols in both the stratosphere and the troposphere on a global scale at all required altitudes. To deliver these data, the most novel technologies such as all-solid-state lasers, photon-counting detectors and ultra-lightweight deployable telescopes must be employed in the mission payload.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.