Accurate motion tracking of the left ventricle is critical in detecting wall motion abnormalities in the heart after an injury such as a myocardial infarction. We propose an unsupervised motion tracking framework with physiological constraints to learn dense displacement fields between sequential pairs of 2-D B-mode echocardiography images. Current deep-learning motion-tracking algorithms require large amounts of data to provide ground-truth, which is difficult to obtain for in vivo datasets (such as patient data and animal studies), or are unsuccessful in tracking motion between echocardiographic images due to inherent ultrasound properties (such as low signal-to-noise ratio and various image artifacts). We design a U-Net inspired convolutional neural network that uses manually traced segmentations as a guide to learn displacement estimations between a source and target image without ground- truth displacement fields by minimizing the difference between a transformed source frame and the original target frame. We then penalize divergence in the displacement field in order to enforce incompressibility within the left ventricle. We demonstrate the performance of our model on synthetic and in vivo canine 2-D echocardiography datasets by comparing it against a non-rigid registration algorithm and a shape-tracking algorithm. Our results show favorable performance of our model against both methods.
Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.