In this paper, an investigation on the working point of slope-assisted dynamic distributed Brillouin sensing is presented. A comparison has been carried out between the sensing performances achieved at the inflection point and the 3 dB point of the Brillouin gain spectrum. Besides the intrinsic 13.1% frequency-to-amplitude sensitivity enhancement and a higher signal level, the dynamic sensing at the inflection point can achieve a doubled in maximum and in average a 36.8% wider dynamic range with much better working point symmetry. Simulations with strain signals also demonstrate that, compared to the 3 dB point, the average error at the inflection point can be significantly reduced to only 27.7%. As shown in this work, by a simple shift of the working point from the 3 dB to the inflection point, slope-assisted dynamic sensing can be well enhanced.
We demonstrate the application of a novel type of distributed fiber optic sensors (DFOSs) to dynamically monitor the effects of wind on solar tracker structures used in photovoltaic power stations. This DFOS is based on the stimulated Brillouin scattering nonlinear optical effect in optical fiber, which can be used to measure the distribution of strain and temperature along a given structure. However, contrary to existing solutions, the sensor provides dynamic real-time measurements with hundreds or even thousands of full simultaneous measurements for all positions in the fiber each second. Moreover, high-precision and high spatial resolution are obtained. This so-called dynamic Brillouin optical time-domain analysis (D-BOTDA) sensor provides real-time monitoring of the bending and torsion of the structure of solar trackers in response to wind load. This helps the solar tracker manufacturer asses and improve the mechanical designs so as to introduce corrective measures and develop cost-effective components that properly withstand the effects of wind at any given location. We experimentally demonstrate the application of a D-BOTDA sensing system to measure distributed bending and, for the first time to our knowledge, also distributed torsion along the stressed beam of the solar tracker. For this purpose, we have developed a procedure to instrument the torsion beam with two optical sensing fibers that are fixed helically wound along the beam in opposite directions, so that any common-mode thermal or bending effects are removed. We initially performed tests in a laboratory facility in which sections of the torsion beam could be subjected to controlled moments. Static and dynamic loads were applied and the measured deformations were compared to those obtained with fiber Bragg gratings, which just provide point measurements of strain. In both cases, full agreement was demonstrated. Finally, the system was installed in an operational solar park.
We review the latest developments in long-range Brillouin optical time-domain analysis sensors. The factors that impair the performance of these sensors, particularly in terms of their distance range, are discussed together with the latest methods to overcome them. We focus on our recent contributions based on the application of the probe dithering method, which is based on introducing a wavelength modulation to the probe wave. This technique is shown to effectively compensate nonlocal effects originated in the depletion of the pump pulse as well as of its pedestal. In addition, it can provide amplification to the pump wave with a slight modification of the setup. Furthermore, this method can be combined with pump pulse coding and a new technique for coding linearization that we have devised to further extend the sensing length into the hundreds of kilometers range.
We introduce a new technique to extend the dynamic range of coherent BOTDA sensors in dynamic measurements. It is based on launching pump pulses containing multiple frequencies so that the Brillouin spectra that they generate overlap, allowing to measure larger Brillouin frequency shift variations. Furthermore, this technique is compared to the procedure of shortening the length of the pulses, which also leads to a broadening of the spectra. We analyze both techniques, obtaining a threefold increase in range up to 400 MHz (±4000 με).
We report on the effects of large pump pulse powers on Brillouin optical time-domain analysis (BOTDA) sensors based on phase-modulated probe wave and coherent detection. It is found that the large Brillouin gain that comes from the use of high power pulses induces a narrowing of the RF phase-shift spectrum that is measured in these sensors. This narrowing leads to a Brillouin frequency shift measurement error when the sensor is configured for dynamic measurements. However, the effect has been found to be less significant than that observed in dynamic slope-assisted BOTDA sensors based on amplitude.
We present a simplified configuration for distributed Brillouin optical time domain analysis sensors. The technique is based on passive optical filtering of the spectral components generated in an RF-pulse-modulated optical source. The aim of this configuration is to reduce the cost of the sensor by simplifying the generation of the optical waves involved in the sensing process. Proof-of-concept experiments demonstrate distributed temperature measurement with 1 m resolution over a 20 km sensing fiber.
We introduce a modification of the differential pulse-width pair technique in a BOTDA sensor based on a phase-modulated probe wave and RF demodulation. This provides a differential Brillouin phasorial signal with high spatial and spectral resolution in both components (magnitude and phase-shift). Moreover, the use of a phase-modulated probe wave provides RF phase-shift measurements tolerant to the emergence of non-local effects. The combination of both techniques can lead to the development of long-range BOTDA sensors. Proof-of-concept experiments demonstrate RF phase-shift measurements with 1m spatial resolution over 50km and an uncertainty of 1.3ºC at the worst contrast position.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.