There is growing research interest to merge the idea of a metacognitive radar with that of a tracking radar. The concept of metacognition can be broadly summarized as the process of learning about learning. In a metacognitive tracking radar, the system uses cognitive processes to detect and track a target in a dynamic environment. The radar then applies metacognitive techniques to select the cognitive process that yields the most accurate target track. In the context of target tracking, cognitive processes are various tracking algorithms. Currently, metacognitive tracking radar systems have only been demonstrated on targets of known trajectories. Their performance in the case of a randomly maneuvering target has not been explored. This paper presents an initial approach to this problem. First, an algorithm to generate random target trajectories is presented. Then, these trajectories are estimated using two estimation algorithms: the Extended Kalman Filter (EKF) and the Interacting Multiple Model (IMM) estimator. Finally, the performances of these two algorithms are compared.
To satisfy the increase in demand for radio frequency (RF) spectrum, recent Federal Communications Commission (FCC) policies permit spectrum sharing between radar and Long-Term Evolution (LTE) communication systems. New cognitive radar systems are promoting spectrum sharing capabilities to mitigate the risk of mutual interference. To develop and test these systems, a realistic communications RF interference (RFI) environment is necessary. This paper describes a system, currently under development, to generate continuous dynamic 4G/LTE RFI for use by radar system designers. The system employs a Vector Signal Transceiver to emulate RFI with various frequency, time-complexity, and power parameters. Many 4G/LTE frames are pre-generated, then, according to the specified parameters, the random frame sequences are generated in real-time. This produces continuous, dynamic, and realistic LTE emissions for a controlled test environment. This work presents implementation details of the LTE emulation system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.