A quasicontinuously wavelength tuned self-injection locked blue laser diode system employing a prism is presented. A rigorous analysis of the injection ratio (IR) in the form of three systems, namely high (HRS, ∼ − 0.7 dB IR), medium (MRS, ∼ − 1.5 dB IR), and low (LRS, ∼ − 3.0 dB IR) reflection systems, showed a direct relationship with the wavelength tunability whereas the usable system power exhibited an inverse correlation. In particular, MRS configuration demonstrated a concurrent optimization of tuning window and system power, thus emerging as a highly attractive candidate for practical realization. Moreover, a comprehensive investigation on two distinct MRS configurations employing different commercially available InGaN/GaN blue lasers, i.e., MRS-1 and MRS-2, displayed a wavelength tunability (system power) of ∼8.2 nm (∼7.6 mW) and ∼6.3 nm (∼11.6 mW), respectively, at a low injection current of 130 mA. In addition, both MRS configurations maintained high-performance characteristic with corresponding average optical linewidths of ∼80 and ∼58 pm and a side-mode-suppression-ratio of ≥12 dB. Lastly, a thorough stability analysis of HRS and MRS configurations, which are more prone to system instabilities due to elevated IRs, is performed at critical operation conditions of a high injection current of ≥260 mA and a temperature of 40°C, showing an extended stable performance of over 120 min, thus further substantiating the promising features of the prism-based systems for practical applications.
The development of laser diodes at visible wavelengths have revolutionized the technological era. Nowadays, specialized applications such as atomic cooling, sensing, and optical communication require not just a conventional laser but a narrow-line or single-wavelength laser source. Herein, we report the demonstration of narrow-line emission directly from commercial InGaN-based laser diodes by monolithic integration of distributed-feedback (DFB) surface grating. Our results obtained at continuous wave (CW) current injection and room temperature reveal spectral lasing linewidth in the picometer range on wavelengths between 460 nm and 520 nm.
There exists a demand for radiation-safe and high-speed communication systems available to public users in the fifthgeneration (5G) communication and beyond. In this regard, visible light communication (VLC) stands out offering multiGigabit-per-second (Gbit/s) data transmission, energy efficiency and illumination, while being free from electromagnetic interference. Here, we report a high-speed VLC link by using a 443-nm GaN-based superluminescent diode (SLD) and bit-loading discrete-multiple-tone (DMT) modulation. Analysis of the device characteristics and modulation parameters shows a feasible bit allocation of up to 256-QAM while obtaining up to 3.8 Gbit/s data rate. These results, together with the electro-optical properties of the SLD such as being droop-free, speckle-free and high-power, make it an attractive solution for the future of public communications and smart lighting, while complementing traditional fiber-based and millimeter-wave technology.
Group III-nitride semiconductor materials especially AlGaN are key-emerging candidates for the advancement of ultraviolet (UV) photonic devices. Numerous nanophotonics approaches using nanostructures (e.g., nanowires, nanorods, and quantum dots/disks) and nanofabrication (e.g., substrate patterning, photonic crystals, nanogratings, and surface-plasmons) have been demonstrated to address the material growth challenges and to enhance the device efficiencies of photonic devices operating at UV wavelengths. Here, we review the progress of nanophotonics implementations using nanostructured interfaces and nanofabrication approaches for the group III-nitride semiconductors to realize efficient UV-based photonic devices. The existing challenges of nanophotonics applications are presented. This review aims to provide analysis of state-of-the-art nanophotonic approaches in advancing the UV-photonic devices based on group III-nitride semiconductors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.