Additive Manufacture (AM) comprises a group of technologies that allow to go from a 3D model to manufactured components, creating them layer by layer until the part is complete [1]. Among the advantages of AM, the ones that apply most to astronomical instrumentation are part complexity and consolidation, the addition of functionalities, design freedom and lightweighting capability.
The IAC participated in the H2020 international consortium, within the work package on cooled mirrors for astronomical instrumentation [2], whose completion in 2021 left a series of outputs in terms of preferred technologies and materials, lightweight typologies and a cookbook [3] that includes both design guidelines for additive manufacturing and specific values of the geometrical parameters for the parts to be "printed".
The aim of this paper is to present the whole process since the beginning: from the conceptual design, to the results of the studies carried out on the lightweight mirror samples (with the two typologies and the most promising materials of those studied within the IAC for H2020). Comparisons will be made mainly in terms of metrology, dimensional tolerances and optical surface finishes of the mirrors (roughness, SFE, etc.).
HARMONI is the first light visible and near-IR integral field spectrograph for the ELT. It covers a large spectral range from 450 nm to 2450 nm with resolving powers from 3500 to 18000 and spatial sampling from 60 mas to 4 mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews. HARMONI is a work-horse instrument that provides efficient, spatially resolved spectroscopy of extended objects or crowded fields of view. The gigantic leap in sensitivity and spatial resolution that HARMONI at the ELT will enable promises to transform the landscape in observational astrophysics in the coming decade. The project has undergone some key changes to the leadership and management structure over the last two years. We present the salient elements of the project restructuring, and modifications to the technical specifications. The instrument design is very mature in the lead up to the final design review. In this paper, we provide an overview of the instrument's capabilities, details of recent technical changes during the red flag period, and an update of sensitivities.
HARMONI is the first light, adaptive optics assisted, integral field spectrograph for the European Southern Observatory’s Extremely Large Telescope (ELT). A work-horse instrument, it provides the ELT’s diffraction limited spectroscopic capability across the near-infrared wavelength range. HARMONI will exploit the ELT’s unique combination of exquisite spatial resolution and enormous collecting area, enabling transformational science. The design of the instrument is being finalized, and the plans for assembly, integration and testing are being detailed. We present an overview of the instrument’s capabilities from a user perspective, and provide a summary of the instrument’s design. We also include recent changes to the project, both technical and programmatic, that have resulted from red-flag actions. Finally, we outline some of the simulated HARMONI observations currently being analyzed.
HARMONI is the adaptive optics assisted, near-infrared and visible light integral field spectrograph for the Extremely Large Telescope (ELT). A first light instrument, it provides the work-horse spectroscopic capability for the ELT. As the project approaches its Final Design Review milestone, the design of the instrument is being finalized, and the plans for assembly, integration and testing are being detailed. We present an overview of the instrument’s capabilities from a user perspective, provide a summary of the instrument’s design, including plans for operations and calibrations, and provide a brief glimpse of the predicted performance for a specific observing scenario. The paper also provides some details of the consortium composition and its evolution since the project commenced in 2015.
HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018.
WEAVE is the next-generation, wide-field, optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. The WHT will undergo a significant adaptation to accommodate this facility. A two-
degree Prime Focus Corrector (PFC), that includes an Atmospheric Dispersion Compensator, is being planned and is currently in its final design phase. To compensate for the effects of temperature-induced image degradation, the entire PFC system will be translated along the telescope optical axis. The optical system comprises six lenses, the largest of which will have a diameter of 1.1m. Now that the optical elements are in production, the designs for the lens cells and
the mounting arrangements are being analysed to ensure that the image quality of the complete system is better than 1.0 arcsec (80% encircled energy diameter) over the full field of view. The new PFC system is designed to be routinely
interchanged with the existing top-end ring. This will maximise the versatility of the WHT and allow the two top-end
systems to be interchanged as dictated by the scientific needs of the astronomers that will use WEAVE and other
instruments on the telescope. This manuscript describes the work that has been carried out in developing the designs for
the mechanical subsystems and the plans for mounting the lenses to attain an optical performance that is commensurate with the requirements derived from planning the WEAVE surveys.
The High Optical Resolution Spectrograph (HORS) is a proposed high-resolution spectrograph for the
10-m Gran Telescopio Canarias (GTC) based on components from UES, a spectrograph which was in
use at the 4.2-m William Herschel Telescope (WHT) between 1992 and 2001.
HORS is designed as a cross-dispersed echelle spectrograph to observe in the range 380-800 nm with
a FWHM resolving power of about 50,000. HORS would operate on the GTC as a general-purpose
high-resolution spectrograph, and it would serve as a test-bed for some of the technologies proposed
for ESPRESSO – an ultra-high stability spectrograph planned for the Very Large Telescope (VLT) of
the European Southern Observatory.
The HORS spectrograph will be placed in the Coudé room, where it can enjoy excellent thermal and
mechanical stability, fiber fed from the Nasmyth focus, which is shared with OSIRIS. Inside the
spectrograph, incoming light will hit a small folder mirror before reaching the collimator. After a
second folder, the light will go through a set of three prisms and an Echelle grating before entering the
spectrograph camera and, finally, reaching the detector.
This manuscript contains a summary of the whole process that has transformed UES into HORS, with
all the mechanical and optical modifications that have been introduced to reach the final layout.
We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William
Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based
(LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree
prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object
(MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single
spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the
telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single
exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final
design and early procurement phase, with commissioning at the telescope expected in 2017.
Seeing measurements are crucial for the optimum design of (multi-conjugate) adaptive optics systems operating at solar
telescopes. For the design study of the 4-meter European Solar Telescope, to be located in the Canary Islands, several
instruments have been constructed and operated, at the Observatorio del Roque de los Muchachos (La Palma) and at the
Observatorio del Teide (Tenerife), to measure the properties of the ground layer and medium-high altitude turbulence.
Several units of short (42.34 cm) and two long (323.06 cm) scintillometer bars are, or are to be, installed at both
observatories. In addition to them, two wide-field wavefront sensors will be attached to the optical beams of the Swedish
tower, on La Palma, and of the German VTT, on Tenerife, simultaneously used with the normal operation of the
telescopes. These wavefront sensors are of Shack-Hartmann type with ~1 arcminute field of view. In this contribution,
the instruments setup and their performance are described.
FastCam is an instrument jointly developed by the Spanish Instituto de Astrofísica de Canarias and the Universidad Politécnica de Cartagena designed to obtain high spatial resolution images in the optical wavelength range from ground-based telescopes.
The instrument consists of a very low noise and very fast readout speed EMCCD camera capable of reaching the diffraction limit of medium-sized telescopes from 500 to 850 nm. FastCam incorporates a FPGAs-based device to save and evaluate those images minimally disturbed by atmospheric turbulence in real time. The undisturbed images represent a small fraction of the observations. Therefore, a special software package has been developed to extract, from cubes of tens of thousands of images, those with better quality than a given level. This is done in parallel with the data acquisition at the telescope.
After the first tests in the laboratory, FastCam has been successfully tested in three telescopes: the 1.52-meter TCS (Teide Observatory), the 2.5-meter NOT, and the 4.2-meter WHT (Roque de los Muchachos Observatory). The theoretical diffraction limit of each telescope has been reached in the I band (850 nm) -0.15, 0.08 and 0.05 arcsec, respectively-, and similar resolutions have been also obtained in the V and R bands.
Future work will include the development of a new instrument for the 10.4-meter GTC telescope on La Palma.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.