The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy & Astrophysics and is NASA’s next astrophysics flagship observatory. Launching no earlier than 2026, it will conduct several wide field and time domain surveys, as well as conduct an exoplanet census. Roman’s large field of view, agile survey capabilities, and excellent stability enable these objectives, yet present unique engineering and test challenges. Roman comprises a Spacecraft and the Integrated Payload Assembly (IPA), the latter of which includes the Optical Telescope Assembly (OTA), the primary science Wide Field Instrument, a technology demonstration Coronagraph Instrument, and the Instrument Carrier, which meters the OTA to each instrument. The Spacecraft supports the IPA and includes the Bus, Solar Array Sun Shield, Outer Barrel Assembly, and Deployable Aperture Cover. It provides all required power, attitude control, communications, data storage, and stable thermal control functions as well as shading and straylight protection across the entire field of regard. This paper presents the Observatory as it begins integration and test, as well as describes key test and verification activities.
Surveys in space and time are key to answering outstanding questions in astrophysics. The power to study very large numbers of stars, galaxies, and transient events over large portions of the sky and different time scales has repeatedly led to new breakthroughs. The Nancy Grace Roman Space Telescope (Roman), NASA’s next Astrophysics Flagship mission, elevates wide field and time domain survey observations to previously inaccessible scales. Roman carries the Wide Field Instrument (WFI), which provides visible to near-infrared imaging and spectroscopy with an unprecedented combination of field-of-view, spatial resolution, and sensitivity. When combined with a highly stable observatory and efficient operations, the WFI allows surveys never before possible. These observations will lead to new discoveries in cosmology, exoplanets, and a very wide array of other astrophysics topics ranging from high redshift galaxies to small bodies in the solar system. This paper provides an overview of Roman survey science, connects this science to the design of the WFI, and provides a status update on WFI hardware build and test.
The Pandora SmallSat is a NASA flight project designed to study the atmospheres of exoplanets. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of planetary atmospheres in the coming decade, and is a key science driver for HST and JWST. Stellar photospheric inhomogeneity due to star spots, however, has been shown to contaminate the observed spectra in these high-precision measurements. Pandora will address the problem of stellar contamination by collecting long-duration photometric observations sampled over a stellar rotation period with a visible-light channel and simultaneous spectra with a near-IR channel. These simultaneous multiwavelength observations will constrain star spot covering fractions of exoplanet host stars, enabling star and planet signals to be disentangled in transmission spectra to then reliably determine exoplanet atmosphere compositions. Pandora will observe exoplanets with sizes ranging from Earthsize to Jupiter-size and host stars spanning mid-K to late-M spectral types. Pandora was selected in early 2021 as part of NASA’s inaugural Astrophysics Pioneers Program. Herein, we present an overview of the mission, including the science objectives, operations, the observatory, science planning, and upcoming milestones as we prepare for launch readiness in 2025.
The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy and Astrophysics and is NASA’s next astrophysics flagship Observatory. Launching no earlier than 2026, it will conduct several wide field and time domain surveys, as well as conduct an exoplanet census. Roman’s large field of view, agile survey capabilities, and excellent stability enable these objectives, yet present unique engineering and test challenges. The Roman Observatory comprises a Spacecraft and the Integrated Payload Assembly (IPA), the latter of which includes the Optical Telescope Assembly (OTA), the primary science Wide Field Instrument, a technology demonstration Coronagraph Instrument, and the Instrument Carrier, which meters the OTA to each instrument. The Spacecraft supports the IPA and includes the Bus, Solar Array Sun Shield, Outer Barrel Assembly, and Deployable Aperture Cover. It provides all required power, command handling, attitude control, communications, data storage, and stable thermal control functions as well as shading and straylight protection across the entire field of regard. This paper presents the Observatory as it begins integration and test, as well as describes key test and verification activities.
The Nancy Grace Roman Space Telescope project is NASA's next flagship astrophysics mission to study dark energy, dark matter, and exoplanets along with the innumerable topics that will be enabled by the infrared survey telescope's instruments. The Wide Field Instrument contains a focal plane of 18 newly developed Teledyne H4RG-10 HgCdTe detectors. Roman's focal plane completed its first system level thermal vacuum test at NASA Goddard in 2022, when an increase in dark current compared to component level testing was observed for several detectors. Roman chartered an anomaly review board (ARB) and in collaboration with Teledyne undertook a testing program to help identify possible root cause and select from Roman's spare inventory suitable replacement detectors for devices that had significantly degraded. A possible root cause was determined by the ARB along with recommendations for how to prevent further degradation. We summarize the initial observation of the detector anomaly, present the detector testing strategy to find suitable spares and provide evidence of root cause, share the general findings of the ARB, and show new data showing the improved dark current performance.
The Roman Space Telescope Grism and Prism assemblies will allow the wide-field instrument (WFI) to perform slitless, multi-object spectroscopy across the complete field of view. These optical elements play a critical role in the High Latitude Wide Area and High Latitude Time Domain Surveys, which are designed to produce robust spectroscopic redshifts for millions of objects over the mission lifetime. To facilitate the characterization of these assemblies, a dedicated test bed was designed and utilized to perform a wide variety of spectroscopic measurements over the full range of operational wavelengths and field angles. Characterized features include, but are not limited to dispersion magnitude, dispersion clocking, encircled energy, total throughput, and bandpass edges. We present the results of this experimental campaign in which the Grism and Prism assemblies met or exceeded many of their design requirements and discuss measurement limitations.
Pandora is a low-cost space telescope designed to measure the composition of distant transiting planets. The Pandora observatory is designed with the capability of measuring precision photometry simultaneously with nearinfrared spectroscopy, enabling scientists to disentangle stellar activity from the subtle signature of a planetary atmosphere. The broad-wavelength coverage will provide constraints on the spot and faculae covering fractions of low-mass exoplanet host stars and the impact of these active regions on exoplanetary transmission spectra. Pandora will subsequently identify exoplanets with hydrogen- or water-dominated atmospheres, and robustly determine which planets are covered by clouds and hazes. Pandora observations will also contribute to the study of transit timing variations and phase curve photometry. With a launch readiness date of early-2025, the Pandora mission represents a new class of low-cost space missions that will achieve out-of-this-world science.
KEYWORDS: James Webb Space Telescope, Near infrared, Atmospheric modeling, Point spread functions, Stars, Planets, Exoplanets, Atmospheric sciences, Sensors, Spectroscopy, Modeling and simulation
Pandora is a SmallSat mission, designed to study the atmospheres of exoplanets using transmission spectroscopy and to investigate the impact that stellar contamination and variability has on observing the spectra of these worlds. Pandora’s initial science operation lifetime is one year, so optimizing the science return is critical. Here we present two tools created to assist in the design process. The first is a 2-D spectrum simulator being developed to help refine target selection, optimize observation strategies, and assist in the creation of a data reduction pipeline. The second is a pseudo-retrieval framework that provides a quantifiable method for comparing potential targets against a handful of exoplanetary atmospheric parameters important to the Pandora mission. Preliminary results show Pandora will place tighter constraints on atmospheric properties like water abundance compared to HST and answering its mission objectives will help to inform targets for missions like JWST.
In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its ~130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope’s overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L’ (3.8 μm), as opposed to the shorter wavelength near-infrared bands (1-2.4 μm) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent (~0.1-1 Gyr) stars. LEECH’s contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5μm in preparation for JWST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.