KEYWORDS: Signal detection, Biomedical optics, Brain, Surgery, System integration, Signal processing, Microelectronics, Epilepsy, Neurological disorders, Finite impulse response filters, Digital signal processing, Brain mapping
This paper reports a low area, low power, integer-based digital processor for the calculation of phase synchronization between two neural signals. The processor calculates the phase-frequency content of a signal by identifying the specific time periods associated with two consecutive minima. The simplicity of this phase-frequency content identifier allows for the digital processor to utilize only basic digital blocks, such as registers, counters, adders and subtractors, without incorporating any complex multiplication and or division algorithms. In fact, the processor, fabricated in a 0.18μm CMOS process, only occupies an area of 0.0625μm2 and consumes 12.5nW from a 1.2V supply voltage when operated at 128kHz. These low-area, low-power features make the proposed processor a valuable computing element in closed loop neural prosthesis for the treatment of neural diseases, such as epilepsy, or for extracting functional connectivity maps between different recording sites in the brain.
In computer vision, local descriptors permit to summarize relevant visual cues through feature vectors. These vectors constitute inputs for trained classifiers which in turn enable different high-level vision tasks. While local descriptors certainly alleviate the computation load of subsequent processing stages by preventing them from handling raw images, they still have to deal with individual pixels. Feature vector extraction can thus become a major limitation for conventional embedded vision hardware. In this paper, we present a power-efficient sensing processing array conceived to provide the computation of integral images at different scales. These images are intermediate representations that speed up feature extraction. In particular, the mixed-signal array operation is tailored for extraction of Haar-like features. These features feed the cascade of classifiers at the core of the Viola-Jones framework. The processing lattice has been designed for the standard UMC 0.18μm 1P6M CMOS process. In addition to integral image computation, the array can be reprogrammed to deliver other early vision tasks: concurrent rectangular area sum, block-wise HDR imaging, Gaussian pyramids and image pre-warping for subsequent reduced kernel filtering.
The aim of this article is to guide image sensors designers to optimize the analog-to-digital conversion of pixel outputs. The most common ADCs topologies for image sensors are presented and discussed. The ADCs specific requirements for these sensors are analyzed and quantified. Finally, we present relevant recent contributions of specific ADCs for image sensors and we compare them using a novel FOM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.