The soft x-ray band covers the characteristic lines of the highly ionized low-atomic-number elements, providing diagnostics of the warm and hot plasmas in star atmospheres, interstellar dust, galaxy halos and clusters, and the cosmic web. High-resolution spectroscopy in this band is best performed with grating spectrometers. Soft x-ray grating spectroscopy with R = λ / Δ λ = > 104 has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and the low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx Design Reference Mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps ~2000 large-area CAT gratings. We are moving toward CAT grating volume manufacturing using 200 mm silicon-on-insulator wafers, 4X optical projection lithography tools, deep reactive-ion etching, and KOH polishing. We have, for the first time, produced high-throughput 200 nm-period CAT gratings ~50% deeper than previously fabricated. X-ray diffraction efficiency is significantly improved in the ~1:25 - 1.75 nm wavelength range, peaking above 40% (sum of blazed orders). A new grating-to-grating alignment technique utilizing cross-support diffraction of visible light is presented, as well as the results of CAT grating emissivity measurements.λ
High-resolution (R = λ/Δλ >2000) x-ray absorption and emission line spectroscopy in the soft x-ray band is a crucial diagnostic for the exploration of the properties of ubiquitous warm and hot plasmas and their dynamics in the cosmic web, galaxy clusters, galaxy halos, intragalactic space, and star atmospheres. Soft x-ray grating spectroscopy with R > 10,000 has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx design reference mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps ≈ 2000 large-area CAT gratings. We are developing new patterning and fabrication process sequences that are conducive to large-format volume processing on stateof-the-art 200 mm wafer tools. Recent x-ray tests on 200 nm-period gratings patterned using e-beam-written masks and 4x projection lithography in conjunction with silicon pore focusing optics demonstrated R ≈ 104 at 1.49 keV. Extending the grating depth from 4 μm to 6 μm is predicted to lead to significant improvements in diffraction efficiency and is part of our current efforts using a combination of deep reactive-ion etching and wet etching in KOH solution. We describe our recent progress in grating fabrication and report our latest diffraction efficiency and modeling results.
We present an update on our work measuring the performance and alignment of the critical-angle transmission (CAT) gratings for the proposed sounding Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX) mission, as well as a possible orbital version. We built and verified a grating alignment system that could be used for REDSoX Polarimeter fabrication. The performances of the gratings were measured using the MIT polarimetry beamline. The beamline is a monochromator and has been used to measure the absolute efficiencies of not only the REDSoX prototype gratings but also the Arcus Phase A gratings. It is also capable of producing and measuring polarized soft X-rays to aid in the development and testing of future missions. Lastly, we present an update on our effort applying twisted crystals to X-ray polarimetry. Support for this work was provided in part by the NASA grant NNX15AL14G and a grant from the MIT Kavli Institute Research Investment Fund.
We present the performance and recent results of the MIT polarimetry beamline. Originally designed for testing Chandra HETG gratings, the beamline has been adapted to test components for soft x-ray polarimetry applications. Since then, its monochromator capabilities have also been used to test gratings. We present results on the measured absolute efficiencies of the Arcus Phase A gratings using the B-K, O-K, and C-K emission lines. The beamline has also been used to develop tools and techniques to measure the linear polarization of soft X-rays (0.2-0.8 keV), which form the basis for a sounding rocket mission REDSoX (Rocket Experiment Demonstration of a Soft X-ray Polarimeter) and a possible orbital mission. We present our tests to align the REDSoX gratings, as well as our idea to use thin twisted crystals as a possible alternative to laterally-graded multilayer mirrors. Support for this work was provided in part by the NASA grant NNX15AL14G and a grant from the MIT Kavli Institute.
High resolution absorption and emission line spectroscopy in the soft x-ray band are promising techniques to measure hot baryon distributions in extended galaxy halos, galaxy clusters, and the connecting filaments of the cosmic web. It can characterize outflows from supermassive black holes and help understand their impact on the structure and evolution of the interstellar medium and beyond. Stellar magnetic activity, accretion, coronal emission and flares are additional targets for soft x-ray spectroscopy. Higher resolving power and larger effective area than those provided by current missions are required in order to make progress. Recent breakthroughs in x-ray diffraction grating and mirror technologies promise order-of-magnitude improved performance if new missions were built today, and even greater improvements beyond the next decade. Here we describe recent progress in critical-angle transmission (CAT) grating technology. CAT gratings combine the advantages of traditional transmission gratings (relaxed alignment tolerances, low mass, transparency at higher energies) and blazed reflection gratings (high diffraction efficiency, high resolving power R due to blazing into high orders). CAT gratings have demonstrated resolving power greater than 10,000 and absolute diffraction efficiency above 30% in the soft x-ray band. They are an enabling technology for the Arcus grating spectrometer Explorer (R < 2500, effective area < 250 cm2) and a candidate for the Lynx x-ray grating spectrometer (R < 5000, effective area < 4,000 cm2).
Arcus, a mission proposed as a Medium Size Explorer for high-resolution x-ray spectroscopy, requires unprecedented sensitivities: high resolving power (λ/Δλ >; 2500) and large collecting area (~ 350 cm2). The core instruments on Arcus are Critical-Angle Transmission (CAT) grating spectrometers consisting of hundreds of co-aligned diffraction gratings. The gratings require thorough quality control along the entire manufacturing process: from bare silicon wafers to CAT grating petal assembly. Period variation, grating bar tilt angles, misalignment, and grating film buckling are potential errors of interest which could degrade the performance of the x-ray grating spectrometer. We present progress towards development of metrology techniques to measure and manage aforementioned errors during the entire alignment and integration processes: starting right after fabrication of CAT grating membranes to their assembly into large arrays. A scanning laser reflection tool (SLRT) was developed to measure period variations, alignment, and area percentage of pinched grating bars. An array of four CAT gratings was successfully aligned to satisfy Arcus alignment allocations for a grating window alignment test (GWAT). No discernible signal was found from an effort to measure a ‘half’ diffraction order to characterize stiction between grating bars. A metrology protocol was developed to measure grating bar tilt angle variations and average bar tilt angles relative to the grating surface normal, based on small-angle x-ray scattering (SAXS, Cu-Kα) and an optical surface normal measurement (OSNM) setup. A grating holder was designed with integrated slits to relate independent measurements from two different setups using visible and x-ray beams. Bar tilt variations of 1 degree and average bar tilt angles of ~0.3 degree were observed for seven different CAT grating samples. Bar tilt angle variations induced from buckled grating films were also measured. We discuss implications for a more demanding CAT grating spectrometer for the proposed Lynx X-ray Surveyor mission to be presented to the next Astrophysics Decadal Survey.
Arcus is a high-resolution soft x-ray spectroscopy mid-size Explorer mission selected for a NASA Phase A concept study. It is designed to explore structure formation through measurements of hot baryon distributions, feedback from black holes, and the formation and evolution of stars, disks, and exoplanet atmospheres. The design provides unprecedented sensitivity in the 1.2-5 nm wavelength band with effective area up to 350 cm2 and spectral resolving power R > 2500. The Arcus technology is based on a highly modular design that features 12 m-focal length silicon pore optics (SPO) developed for the European Athena mission, and critical-angle transmission (CAT) x-ray diffraction gratings and x-ray CCDs developed at MIT. CAT gratings are blazed transmission gratings that have been under technology development for over ten years. We describe technology demonstrations of increasing complexity, including mounting of gratings to frames, alignment, environmental testing, integration into arrays, and performance under x-ray illumination with SPOs, using methods proposed for the manufacture of the Arcus spectrometers. CAT gratings have demonstrated efficiency > 30%. Measurements of the 14th order Mg-Kα1,2 doublet from a co-aligned array of four CAT gratings illuminated by two co-aligned SPOs matches ray trace predictions and exceeds Arcus resolving power requirements. More than 700 CAT gratings will be produced using high-volume semiconductor industry tools and special techniques developed at MIT
Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the roll direction using a laser-based technique. Simultaneous x-ray illumination of both gratings with an SPO module demonstrated that we can exceed Arcus grating-to-grating alignment requirements without x rays.
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.