Quantum dot (QD) lasers have many attractive features including low-threshold current density, high gain, low chirp and
superior temperature stability. In this paper, design, fabrication and characteristics of wafer-level index coupled
holographically fabricated 1.3μm QD distributed feedback (DFB) lasers are reported. Previously, 1.3 μm QD-DFB lasers
were fabricated with metal surface gratings, which are lossy and (being typically written by e-beam lithography) are
difficult to fabricate. In this paper, devices are fabricated using molecular beam epitaxy (MBE) for QD growth,
metalorganic chemical vapor deposition (MOCVD) for grating overgrowth, and wafer level interference lithography for
grating fabrication. Design and fabrication methods for these devices are reported. Analysis of broad area devices gives
a material transparency current density of ~150A/cm2. Single mode ridge waveguide devices with cavity length of 500
μm were tested. Device characteristics were fairly uniform, with typical DC characteristics of the devices of threshold
currents of ~35mA and slope efficiencies of ~0.11W/A. Measured bandwidths at room temperature were around 1.5
GHz, with very flat responses. Further analysis and design revision of the laser is ongoing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.