The Chandra ACIS has seriously damaged by the low energy proton in
orbit. Radiation hardness is an important characteristics of a device
in space use. Therefore we applied the mesh experiment to a relatively
low energy proton beam employing the CCD developed for the
MAXI~(Monitor of All-sky X-ray Image) CCD camera named SSC that is
scheduled to be onboard the International Space Station~(ISS) in
2005. It consists of 1024×1024 pixels with 24μm square. It
is equipped with a `notch' structure in the middle of the pixel so that it is designed to be radiation hard. A mesh experiment is, so far, the only practical technique to study the CCD response with subpixel resolution. The mesh is made of gold with 10μm thick with many holes of 2μm in diameter. The proton beam is controlled so that the proton passing through the mesh hole can penetrate into the CCD chip with leaving damages near the buried channel inside.
We have employed the mesh experiment for the front-illuminated (FI)CCD having small pixel size of 8μm and for the back-illuminated(BI) CCD having pixel size of 24μm. BI CCDs possess the same structure as the FI CCDs. Since X-ray photons enter from the back surface of the CCD, the primary charge cloud is formed far from the electrodes. The primary charge cloud expands through diffusion process until they reach the potential well which is just below the electrodes. Therefore, the diffusion time for the charge cloud produced by X-rays is longer than those in the FI CCD, resulting the larger charge cloud shape to be expected.
The mesh experiment enables us to specify the X-ray point of interaction with a subpixel resolution. We then have measured a charge cloud shape produced in the FI CCD as well as the BI CCD. We found that there are two components of the charge cloud shape having different size: a narrow component and a broad component for both CCDs. The size of narrow component obtained with the FI CCD is 0.6-1.4μm in unit of a standard deviation which is consistent with the previous experiments with FI CCD whole pixel size is 24μm. For the BI CCD, the size of the narrow component is 2.8-5.7μm and strongly depends on the attenuation length in Si of incident X-rays. The shorter the attenuation length of X-rays is, the larger the charge cloud becomes. This result is qualitatively consistent with a diffusion model inside the CCD. On the other hand, the size of the broad component is roughly constant of ≈ 13μm and does not depend on X-ray energies. Judging from the design value of the CCD and the fraction of each component, we conclude that the narrow component is originated in the depletion region whereas the broad component is in the field-free region.
Taking into account the charge cloud shape obtained, we calculated the X-ray point of interaction for all X-ray events. We estimated the uncertainty of the position resolution to compare it with the location of the mesh hole. We then obtained the position resolution of 1 μm for both CCDs which is similar value of the previous results whereas the fraction of split pixel event becomes roughly three times and an order of magnitude larger than previous results. We can thus develop the X-ray spectroscopic detector having a micron order position resolution with a high throughput.
When an X-ray photon is photoabsorbed in the CCD, it generates a primary charge cloud expanding through the diffusion. A mesh experiment for the X-ray CCD enables us to specify the interaction position of the X-ray photon with subpixel resolution. Furthermore, we can directly measure the charge cloud shape that can be well expressed by Gaussian profile. When an X-ray photon enters the pixel (event pixel), the primary charge is mainly collected into the event pixel. When the X-ray landing position is close enough to the pixel boundary, the primary charge spills over the adjacent pixel forming split events. The X-ray event is sorted by the event pattern, how many pixels does the primary charge split, resulting various grades of the events. We can easily understand that there are three parameters coupled together: the X-ray landing position inside the pixel, the X-ray event pattern and the primary charge cloud shape. We can determine any one of them from the other two parameters. Since we know the charge cloud shape using the mesh experiment, we can calculate the X-ray landing position inside the event pixel using the grade of the event. We applied our method to the Ti- K X-rays for the CCD with 12 micrometer square pixel. Once the primary charge splits into adjacent pixel, we can determine the X-ray landing position with subpixel resolution. Using the three- or four-pixel split event, we obtained the accuracy of the X-ray landing position about 1 micrometer. For two-pixel split event, we obtained the similar position accuracy in the split direction while no improvement perpendicular to it. We will discuss what type of the CCD will be able to achieve the subpixel resolution for all X-ray photons.
A mesh experiment for the x-ray CCD enables us to specify the interaction position of the x-ray photon with subpixel resolution. There are two types of experiments: a single- pitch mesh experiment and a multi-pitch mesh experiment. Using the multipitch mesh experiment, we have established the method to measure the charge cloud shape inside the CCD produced by an x-ray photon. We can measure signal outputs from the pixel according to the interaction position of x- rays. Finally, we obtain, in detail, the charge cloud shape which can be well represented by an asymmetric Gaussian function. The symmetry of the charge cloud shape is probably due to the asymmetry of the electric field inside the CCD.
We report here the experimental result between the x-ray interaction location and the split event. The x-ray interaction position can be localized in subpixel scale using the mesh experiment. We found that the center of gravity of the split even well correlated with the x-ray interaction position. We analyzed the data using two models, assuming the charge cloud shape: one is the rectangular model and the other is the Gaussian model. Although we could not distinguish between them, we obtained the standard deviation of the charge cloud shape of 1-2 micrometers for x-rays of Y-L, Ag-L and Ti-K. When the x-rays enter near the pixel boundary, the charge splits into adjacent pixel, in which we can achieve the accuracy of the x-ray interaction position of subpixel spatial resolution of 1.5-2.2 micrometers . We expect that the x-ray CCD can function as x-ray imager with subpixel resolution useful for the high spatial resolution optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.