Magnetic field (B-field) is the most controversial factor in molecular clouds for star formation, necessitating further observations. The Star Formation Group at the Chinese University of Hong Kong is currently engaged in the construction of ROGer, Asia's inaugural polarimetry. ROGer will be installed on the 12-meter Greenland Telescope (GLT) and will facilitate the observation of B-field morphology within molecular clouds by utilizing dust thermal emission at 345 GHz. ROGer's polarization module introduces the novel implementation of Martin-Puplett interferometer (MPI) optics, enabling real-time sky noise elimination on the same detector through destructive interference. Two 157-pixel silicon-based aluminum film Microwave Kinetic Inductance Detector (MKID) arrays will be employed to detect the orthogonal signal from the MPI optics. Here we will present the prototype of our novel MPI polarimetry and optics design.
SCUBA-2/POL-2 has been the most productive instrument at JCMT since it’s fully commissioned in 2011 September, and it’s constantly oversubscribed during the call-for-proposals by a factor of 3 to 5. The proposed new 850μm instrument will feature 7272 state-of-the-art Microwave Kinetic Inductance Detectors (MKIDs) operated below 100 mK, fully utilizing the JCMT’s 12 arcmin Field of View (FoV), thus have all the capabilities of SCUBA-2 at 850 μm, yet will map an order of magnitude faster. The new instrument will be incorporated with intrinsic polarization measurement capability which is 3636 pixels. Mapping the 850 μm polarization will be improved by a factor of at least 20.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.