Magnetic Resonance Imaging with tagging (tMRI) has long been utilized for quantifying tissue motion and strain during deformation. However, a phenomenon known as tag fading, a gradual decrease in tag visibility over time, often complicates post-processing. The first contribution of this study is to model tag fading by considering the interplay between T1 relaxation and the repeated application of radio frequency (RF) pulses during serial imaging sequences. This is a factor that has been overlooked in prior research on tMRI post-processing. Further, we have observed an emerging trend of utilizing raw tagged MRI within a deep learning-based (DL) registration framework for motion estimation. In this work, we evaluate and analyze the impact of commonly used image similarity objectives in training DL registrations on raw tMRI. This is then compared with the Harmonic Phase-based approach, a traditional approach which is claimed to be robust to tag fading. Our findings, derived from both simulated images and an actual phantom scan, reveal the limitations of various similarity losses in raw tMRI and emphasize caution in registration tasks where image intensity changes over time.
Purpose: We propose a deep learning-based anthropomorphic model observer (DeepAMO) for image quality evaluation of multi-orientation, multi-slice image sets with respect to a clinically realistic 3D defect detection task.
Approach: The DeepAMO is developed based on a hypothetical model of the decision process of a human reader performing a detection task using a 3D volume. The DeepAMO is comprised of three sequential stages: defect segmentation, defect confirmation (DC), and rating value inference. The input to the DeepAMO is a composite image, typical of that used to view 3D volumes in clinical practice. The output is a rating value designed to reproduce a human observer’s defect detection performance. In stages 2 and 3, we propose: (1) a projection-based DC block that confirms defect presence in two 2D orthogonal orientations and (2) a calibration method that “learns” the mapping from the features of stage 2 to the distribution of observer ratings from the human observer rating data (thus modeling inter- or intraobserver variability) using a mixture density network. We implemented and evaluated the DeepAMO in the context of Tc99m-DMSA SPECT imaging. A human observer study was conducted, with two medical imaging physics graduate students serving as observers. A 5 × 2-fold cross-validation experiment was conducted to test the statistical equivalence in defect detection performance between the DeepAMO and the human observer. We also compared the performance of the DeepAMO to an unoptimized implementation of a scanning linear discriminant observer (SLDO).
Results: The results show that the DeepAMO’s and human observer’s performances on unseen images were statistically equivalent with a margin of difference (ΔAUC) of 0.0426 at p < 0.05, using 288 training images. A limited implementation of an SLDO had a substantially higher AUC (0.99) compared to the DeepAMO and human observer.
Conclusion: The results show that the DeepAMO has the potential to reproduce the absolute performance, and not just the relative ranking of human observers on a clinically realistic defect detection task, and that building conceptual components of the human reading process into deep learning-based models can allow training of these models in settings where limited training images are available.
Bones are a common site of metastases in a number of cancers including prostate and breast cancer. Assessing response or progression typically relies on planar bone scintigraphy. However, quantitative bone SPECT (BQSPECT) has the potential to provide more accurate assessment. An important component of BQSPECT is segmenting lesions and bones in order to calculate metrics like tumor uptake and metabolic tumor burden. However, due to the poor spatial resolution, noise, and contrast properties of SPECT images, segmentation of bone SPECT images is challenging. In this study, we propose and evaluate a fuzzy C-means (FCM) clustering based semi-automatic segmentation method on quantitative Tc-99m MDP quantitative SPECT/CT. The FCM clustering algorithm has been widely used in medical image segmentation. Yet, the poor resolution and noise properties of SPECT images result in sub-optimal segmentation. We propose to incorporate information from registered CT images, which can be used to segment normal bones quite readily, into the FCM segmentation algorithm. The proposed method modifies the objective function of the robust fuzzy C-means (RFCM) method to include prior information about bone from CT images and spatial information from the SPECT image to allow for simultaneously segmenting lesion and bone in BQSPECT/CT images. The method was evaluated using realistic simulated BQSPECT images. The method and algorithm parameters were evaluated with respect to the dice similarity coefficient (DSC) computed using segmentation results. The effect of the number of iterations used to reconstruct the BQSPECT images was also studied. For the simulated BQSPECT images studied, an average DSC value of 0.75 was obtained for lesions larger than 2 cm3 with the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.