Glaucoma is a common eye disease. It causes damage to patient’s vision and is difficult to diagnose. By locating Bruch’s membrane opening (BMO) in the Optical Coherence Tomography (OCT) image we can compute important diagnostic parameters which can increase the probability of early diagnosis of glaucoma. Besides the traditional methods, which depend on stratification results, this paper introduces a new method based on an end-to-end deep learning model to detect the BMO. Our model is composed of three parts. The first part is a CNN based retinal feature extraction network. It extracts feature map for both Optic Nerve Head (ONH) proposal and BMO detection. The second part is an ONH proposal network to detect region of interest (ROI) containing BMO. The third part is using the feature map from ONH proposal network to regress the location of BMO. The model has shown a clear precedence over other methods in terms of accuracy. Satisfactory results have been obtained when compared with clinical results.
Relying solely on ophthalmic equipment is unable to meet the present health needs. It is urgent to find an efficient way to provide a quick screening and early diagnosis on diabetic retinopathy and other ophthalmic diseases. The purpose of this study is to develop a cloud-base system for medical image especially ophthalmic image to store, view and process and accelerate the screening and diagnosis. In this purpose the system with web application, upload client, storage dependency and algorithm support is implemented. After five alpha tests, the system bore the thousands of large traffic access and generated hundreds of reports with diagnosis.
OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.
Positron Emission Tomography (PET) and Computed Tomography (CT) have been widely used in clinical practice for radiation therapy. Most existing methods only used one image modality, either PET or CT, which suffers from the low spatial resolution in PET or low contrast in CT. In this paper, a novel 3D graph cut method is proposed, which integrated Gaussian Mixture Models (GMMs) into the graph cut method. We also employed the random walk method as an initialization step to provide object seeds for the improvement of the graph cut based segmentation on PET and CT images. The constructed graph consists of two sub-graphs and a special link between the sub-graphs which penalize the difference segmentation between the two modalities. Finally, the segmentation problem is solved by the max-flow/min-cut method. The proposed method was tested on 20 patients’ PET-CT images, and the experimental results demonstrated the accuracy and efficiency of the proposed algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.