Negative-index fiber Bragg gratings (FBGs) were fabricated using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free fiber with a uniform phase mask, and then a highly polarization dependent phase-shifted FBG (PSFBG) was created from the type I-IR FBG by overexposure. Subsequently, the PSFBG was annealed at 800 °C for 12 hours. A negative-index FBG was obtained with a reflectivity of 99.22%, an insertion loss of 0.08 dB, a blue-shift of 0.83 nm, and an operating temperature of up to 1000 °C.
We demonstrated an ultrasensitive temperature sensor based on a unique fiber Fabry-Perot interferometer (FPI). The FPI was created by means of splicing a mercury-filled silica tube with a single-mode fiber (SMF). The FPI had an air cavity, which was formed by the end face of the SMF and that of the mercury column. Experimental results showed that the FPI had an ultrahigh temperature-sensitivity of up to -41 nm/°C, which was about one order of magnitude higher than those of the reported FPI-based fiber tip sensors. Such a FPI temperature sensor is expected to have potential applications for highly-sensitive ambient temperature sensing.
We reported a few high-sensitivity optical strain sensors based on different types of in-fiber FPIs with air bubble cavities those were fabricated by use of a commercial fusion splicer. The cavity length and the shape of air bubbles were investigated to enhance its tensile strain sensitivity. A FPI based on a spherical air bubble was demonstrated by splicing together two sections of standard single-mode fibers, and the spherical air bubble was reshaped into an elliptical air bubble by mean of repeating arc discharge, so the strain sensitivity of the FPI based on an elliptical air bubble was enhanced to 6.0 pm⁄με owe to the decrease of the air cavity length. Moreover, a unique FPI based on a rectangular air bubble was demonstrated by use of an improved technique for splicing two sections of standard single mode fibers together and tapering the splicing joint. The sensitivity of the rectangular-bubble-based strain sensor was enhanced to be up to 43.0 pm/με and is the highest strain sensitivity among the in-fiber FPI-based strain sensors with air bubble cavities reported so far. The reason for this is that the rectangular air bubble has a sharply taper and a thin wall with a thickness of about 1 μm. Moreover, those strain sensors above have a very low temperature sensitivity of about 2.0 pm/oC. Thus, the temperature-induced strain measurement error is less than 0.046 με/oC.
A novel intensity-modulated strain sensor based on a fiber in-line Mach-Zehnder interferometer is proposed and demonstrated, which is constructed by splicing a thin core fiber between two single mode fibers with a core offset. Such an interferometer exhibits a large fringe visibility of more than 15 dB. When used in axial strain sensing from 0 to 400 με, the interferometer operates at intensity mode of detection with a high sensitivity of -0.023 dB/μεwithout the cross sensitivity between temperature and strain. Its ease of fabrication, high strain sensitivity and intensity mode of detection makes it a low-cost alternative to existing sensing applications.
A selective-filling technique was demonstrated to improve the optical properties of photonic crystal fibres (PCFs). Such a technique can be used to fill one or more fluid samples selectively into desired air holes. The technique is based on drilling a hole or carving a groove on the surface of a PCF to expose selected air holes to atmosphere by the use of a micromachining system comprising of a femtosecond infrared laser and a microscope. The exposed section was immersed into a fluid and the air holes are then filled through the well-known capillarity action. Provided two or more grooves are fabricated on different locations and different orientation along the fibre surface, different fluids may be filled into different airholes to form a hybrid fibre. As an example, we filled half of a pure-silica PCF by a fluid with n=1.480 by carving a rectangular groove on the fibre. Consequently, the half-filled PCF became a bandgap-guiding structure (upper half), resulted from a higher refractive index in the fluid rods than in the fibre core, and three bandgaps were observed within the wavelength range from 600 to 1700 nm. Whereas, the lower half (unfilled holes) of the fibre remains an air/silica index-guiding structure. When the hybrid PCF is bent, its bandgaps gradually narrowed, resulted from the shifts of the bandgap edges. The bandgap edges had distinct bend-sensitivities when the hybrid PCF was bent toward different directions. Especially, the bandgaps are hardly affected when the half-filled PCF was bent toward the fluid-filled region. Such unique bend properties could be used to monitor simultaneously the bend directions and the curvature of the engineering structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.