Ultrashort pulse fiber delivery for Ti:Sapphire lasers is basically restricted to distances below a few meters which is due
to the application of dispersion compensating devices that are not capable of managing third and higher order material
dispersion. By the use of a fiber delivery concept based on higher order mode fibers ultrashort laser pulses in the 800 nm
wavelength range are transmitted over 20 meters without the need for pulse pre-chirping. For the first time a large
distance fiber delivery module is demonstrated, revealing its potential for remote THz imaging or spectroscopy using
ultrashort laser pulses. Application of the fiber delivery is demonstrated by generating and detecting broadband THz
radiation at the fiber output.
Optical coherence tomography (OCT) is a contactless and non-invasive technique nearly exclusively applied for bio-medical imaging of tissues. Besides the internal structure, additionally strains within the sample can be mapped when OCT is performed in a polarization sensitive (PS) way. In this work, we demonstrate the benefits of PS-OCT imaging for non-biological applications. We have developed the OCT technique beyond the state-of-the-art: based on transversal ultra-high resolution (UHR-)OCT, where an axial resolution below 2 μm within materials is obtained using a femtosecond laser as light source, we have modified the setup for polarization sensitive measurements (transversal UHR-PS-OCT). We perform structural analysis and strain mapping for different types of samples: for a highly strained elastomer specimen we demonstrate the necessity of UHR-imaging. Furthermore, we investigate epoxy waveguide structures, photoresist moulds for the fabrication of micro-electromechanical parts (MEMS), and the glass-fibre composite outer shell of helicopter rotor blades where cracks are present. For these examples, transversal scanning UHR-PS-OCT is shown to provide important information about the structural properties and the strain distribution within the samples.
Optical coherence tomography (OCT), so far mainly used in the biomedical field, has a high potential as non-destructive and contactless technique for material characterization and analysis. For these applications, OCT systems with ultra-high resolution in the micrometer range and capable of high imaging speeds are required. In this work, we combine ultra-high resolution imaging using a femtosecond Ti:sapphire laser as light source with the concepts of transversal OCT. Based on acquisition by heterodyne detection via acousto-optic modulators (AOMs), and by using an xy-galvano scanner unit we are able to obtain en-face scans with sizes as large as 3 x 3 mm2 within a few seconds. The ultra-high resolution of our OCT system of 2.95 μm axially and 4 μm laterally, both in air, is shown to be essential for imaging of different compounds and fibre materials. We demonstrate the benefits of en-face scanning OCT for various applications in material investigation where in-plane information is of interest which can hardly be obtained by cross-sectional OCT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.