We report on THz emission in single-crystalline SnS2 in response to above bandgap excitation. Symmetry properties of THz generation suggest that its origin is an ultrafast surface shift current, a 2nd order nonlinear effect that can occur as a result of above-gap photoexcitation of a non-centrosymmetric semiconductor. Multilayer SnS2 can exist in several polytypes that differ in the layer stacking. Of those polytypes, 2H and 18R are centrosymmetric while 4H is not. While Raman spectroscopy suggests that the single crystalline SnS2 in our experiments is 2H, its THz emission has symmetry that are fully consistent with the P3m1 phase of 4H polytype. We hypothesize that the stacking disorder, where strain-free stacking faults that interrupt regions of 2H polytype, can break inversion symmetry and result in THz emission. These results lay the foundations for application of SnS2 as an efficient, stable, flexible THz source material, and highlight the use of THz spectroscopy as a sensitive tool for establishing symmetry properties of materials.
GeS and GeSe are 2D semiconductors with band gaps in the near infrared and predicted high carrier mobility. We find that excitation with 800 nm pulses results in long-lived free photocarriers, persisting for hundreds of picoseconds, in GeS and GeSe noribbons. We also demonstrate that zerovalent Cu intercalation is an effective tool for tuning the photoconductive response. Intercalation of ~ 3 atomic % of zerovalent Cu reduces the carrier lifetime in GeSe and GeS. In GeS, it also shortens the photoconductivity rise and improves carrier mobility.
Germanium sulfide (GeS) is a 2D semiconductor with high carrier mobility, a moderate band gap of about 1.6 eV, and highly anisotropic optical properties. In-plane anisotropy and a large in-plane spontaneous electric polarization in GeS monolayers have been predicted to result in significant second order nonlinear effects in response to above-the-gap excitation with photon energy < 2.5 eV1. We have further confirmed it experimentally by demonstrating surface shift current generation in GeS using THz emission spectroscopy with 3.1 eV excitation.3 Here, we use time-resolved THz spectroscopy to investigate the dynamics and lifetimes of photoexcited carriers in GeS single crystals and nanoribbons in response to excitations with energies ranging from 1.5 eV, resonant with the bulk gap, to 3.1 eV. We find that resulting dynamics vary considerably. Lower energy (1.5 eV) excitation injects carriers directly into three low-lying valleys in the conduction band. Those carriers have long, which photoconductivity persisting for over 500 ps, as it can be seen in Fig. 1(a). On the other hand, injecting carriers high into the conduction band results in THz emission due to the shift current as well as into transient photoconductivity that recovers over <100 ps. Pronounced changes in the transient photoconductivity in response to optical excitation with photon energy across the visible-NIR range open intriguing possibilities for applications in ultrafast spectrally-sensitive photodetectors and solar energy conversion.
We use time-resolved THz spectroscopy to study microscopic conductivity and photoinduced carrier dynamics in MBE-grown 100 nm thick (Bi1-xInx)2Se3 thin films with indium concentration varying from x=0 to x=0.5. Both intrinsic and photoinduced conductivity in Bi2Se3 is significantly higher compared to the films with x=0.25 and x=0.50, with carriers that are not constrained by the twin domain boundaries and exhibit high mobility of 1100 cm2/Vs. We find that introducing indium with concentration of x=0.25 and higher, above the threshold for a topological to trivial transition, suppresses both intrinsic and photoinduced conductivity by over an order of magnitude and reduces the lifetime of photoexcited carriers. These findings demonstrate that controlling indium concentration in (Bi1-xInx)2Se3 films provides an avenue to design (Bi1- xInx)2Se3 films with desired properties for high-speed optoelectronic devices.
Germanium sulfide (GeS) is a 2D semiconductor with high carrier mobility and a moderate band gap (~1.5 eV for multilayer crystals), which holds promise for high-speed optoelectronics and energy conversion. Here, we use time resolved THz spectroscopy to investigate how intercalation of Au, Cu, and Sn impacts the photoexcited carrier dynamics and transient photoconductivity of GeS nanoribbons. We find that zero-valent metals affect the photoexcited carrier lifetime and mobility in different ways. Intercalation of GeS with Cu reduces the lifetime of carriers from ~ 120 ps to 60 ps, while Au and Sn intercalation do not. At the same time, intercalation with Cu, Sn and Au significantly enhances the scattering time of photoexcited carriers (~120 fs vs ~65 fs without intercalation), highlighting the potential of zero-valent metal intercalation as a tool for engineering the optoelectronic properties of GeS nanostructures for application in high-speed electronic devices.
Group-IV monochalcogenides belong to a family of 2D layered materials. Monolayers of group-IV monochalcogenides GeS, GeSe, SnS and SnSe have been theoretically predicted to exhibit a large shift current owing to a spontaneous electric polarization at room temperature. Using THz emission spectroscopy, we find that above band gap photoexcitation with ultrashort laser pulses results in emission of nearly single-cycle THz pulses due to a surface shift current in multi-layer, sub-μm to few- μm thick GeS and GeSe, as inversion symmetry breaking at the crystal surface enables THz emission by the shift current. Experimental demonstration of THz emission by the surface shift current puts this layered group-IV monochalcogenides forward as a candidate for next generation shift current photovoltaics, nonlinear photonic devices and THz sources.
We have observed emission of terahertz radiation from photoexcited GeS nanosheets without external bias. We attribute the origin of terahertz pulse emission to the shift current resulting from inversion symmetry breaking in ferroelectric single- or few-layer GeS nanosheets. We find that the direction of the shift current, and the corresponding polarity of the emitted THz pulses is determined by the spontaneous polarization in the ferroelectric GeS nanosheets. Experimental observation of zero-bias photocurrents puts GeS nanosheets forth as a promising candidate material for applications in third generation photovoltaics based on shift current, or bulk photovoltaic effect.
Liquid crystal cells with LiNbO3:Fe crystals as substrates, are described. The photovoltaic field generated by the substrates is able to reorient the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell, as in liquid crystal light valves. The process does not require the application of an external electric field, thus being potentially useful for applications requiring a high degree of compactness. A detailed characterization of several cells based on lithium niobate crystals with different iron concentration has been carried out. The correlation between the LiNbO3:Fe characteristics and the liquid crystal reorientation is also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.