We introduce a formalism, inspired on the perturbation theory for nearly free electrons in a solid-state crystal, to describe the resonances in optical ring resonators subjected to a perturbation in their dielectric profile. We find that, for small perturbations, degenerate resonant modes are split with the splitting proportional to one specific coefficient of the Fourier expansion of the perturbation. We also find an expected asymmetry in the linewidths (and Q factors) of the split modes. Experimental transmission spectra from rings with specially designed perturbations show a qualitative match with the formalism predictions.
We introduce a formalism, inspired on the perturbation theory for nearly-free electrons in a solid-state crystal, to describe the resonances in optical ring resonators subjected to a perturbation in their dielectric profile. We find that, for small perturbations, degenerate resonant modes are split, with the splitting proportional to one specific coefficient of the Fourier expansion of the perturbation. We also find an expected asymmetry in the linewidths (and Q factors) of the split modes. Experimental transmission spectra from rings with specially designed perturbations show a qualitative match with the formalism predictions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.