The Compton Spectrometer and Imager (COSI) is a NASA funded Small Explorer (SMEX) mission slated to launch in 2027. COSI will house a wide-field gamma-ray telescope designed to survey the entire sky in the 0.2-5 MeV range. Using germanium detectors, the instrument will provide imaging, spectroscopy, and polarimetry of astrophysical sources with excellent energy resolution and degree-scale localization capabilities. In addition to the main instrument, COSI will fly with a student collaboration project known as the Background and Transient Observer (BTO). BTO will extend the COSI bandpass to energies lower than 200 keV, thus enabling spectral analysis across the shared band of 30 keV–2 MeV range. The BTO instrument will consist of two NaI scintillators and student-designed readout electronics. Using spectral information from both the COSI and BTO instruments, physics such as the energy peak turnover in gamma-ray bursts, the characteristics of magnetar flares, and the event frequency of a range of transient phenomena will be constrained. In this paper, we present the expected science returnables from BTO and comment on the shared returnables from the COSI and BTO missions. We include simulations of gamma-ray bursts, magnetar giant flares, and terrestrial gamma-ray flashes using BTO’s spectral response. Additionally, we estimate BTO’s gamma-ray burst detection rate and find that BTO will detect ∼100–150 gamma-ray bursts per year, with at least 10% of the events being sGRB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.