We have been developing an ultra-lightweight Wolter type-I X-ray telescope fabricated with micro electro mechanical systems (MEMS) technologies for GEO-X (GEOspace X-ray Imager) mission.
GEO-X will aim global imaging of the Earth's magnetosphere using X-rays.
The telescope is our original micropore optics which is light in weight (~5 g), compact with a short focal length (~250 mm), and has a wide field-of-view (~5 deg x 5 deg).
In this talk we show developed assembly processes to meet the requirements of the GEO-X mission and the telescope's X-ray imaging performance as an engineering model with this method.
We have been developing silicon foil X-ray optics using a hot plastic deformation process for future astronomical observations. Our foil mirror is made of a 0.3-mm thick silicon wafer and is plastically deformed into a high-accurate conical shape with a curvature radius of ~100 mm. The angular resolution we evaluated using a test sample mirror was ~32 arcseconds in the best region. We have also successfully coated a platinum film on the foil mirror using the atomic layer deposition process. In this talk, we report on the fabrication method and the X-ray imaging capability of our silicon foil X-ray optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.