Background: Skin photosensitivity is a major side effect of photodynamic therapy (PDT). It is induced by the photosensitizer remaining in the skin. It is usually rapidly metabolized by the liver, but the pharmacokinetic profile varies widely among individuals. This makes it difficult to predict the incidence of skin photosensitivity. Therefore, we conducted a prospective study to investigate whether the NPe6 fluorescence intensity in skin after NPe6-PDT could be measured safely in human patients using a fluorescence sensing system for judging the risk of skin photosensitivity.
Methods: The NPe6 fluorescence measurements using a constructed fluorescence sensing system at the inside of the arm were acquired prior to and 5 and 10 minutes after NPe6 administration as well as at the time of PDT (4-5 hours after administration), at discharge (2 or 3 days after PDT), and at 1 or 2 weeks after PDT. Participants were interviewed as to whether they had any complications at 2 weeks after PDT.
Results: Nine male patients and one female patient entered this study. All of the measurements of NPe6 fluorescence in the skin could be obtained without any complications. The spectral peak was detected at the time of discharge (2-3 days after administration) in most cases and it decreased at 1 or 2 weeks after PDT.
Conclusions: The fluorescence of NPe6 in the skin could be detected feasibly using the fluorescence sensing system in human patients. Measuring fluorescence intensity in the skin might be useful to predict the incidence of skin photosensitivity after PDT.
We studied a 3-compartment dynamic model of talaporfin sodium pharmacokinetics in silico. Drug distribution might
change after intravenous injection from plasma to interstitial space and then into myocardial cells. We have developed a
new cardiac ablation using photosensitization reaction with laser irradiation shortly after talaporfin sodium injection. We
think that the major cell-killing factor in our cardiac ablation would be an oxidation by singlet oxygen produced in the
interstitial space in myocardium with laser irradiation shortly after the photosensitizer administration. So that the
talaporfin sodium concentration change in time in the interstitial space should be investigated. We constructed the
pharmacokinetics dynamic model composed by 3-compartments, that is, plasma, interstitial space, and cell. We
measured talaporfin sodium fluorescence time change in human skin by our developed fluorescence measurement system
in vivo. Using the measured concentration data in plasma and skin in human, we verified the calculation accuracy of our
in silico model. We compared the simulated transition tendency of talaporfin sodium concentration from interstitial space
to cells in our in silico model with the reported uptake tendency using cultured myocardial cell. We identified the
transition coefficients between plasma, interstitial space, and cell compartment, and metabolization coefficient from
plasma by the fitting with measured data.
For the first time, the use of fiber-optic color Doppler optical coherence tomography (CDOCT) to map in vivo the three-dimensional (3-D) vascular network of airway segments in human lungs is demonstrated. Visualizing the 3-D vascular network in the lungs may provide new opportunities for detecting and monitoring lung diseases such as asthma, chronic obstructive pulmonary disease, and lung cancer. Our CDOCT instrument employs a rotary fiber-optic probe that provides simultaneous two-dimensional (2-D) real-time structural optical coherence tomography (OCT) and CDOCT imaging at frame rates up to 12.5 frames per second. Controlled pullback of the probe allows 3-D vascular mapping in airway segments up to 50 mm in length in a single acquisition. We demonstrate the ability of CDOCT to map both small and large vessels. In one example, CDOCT imaging allows assignment of a feature in the structural OCT image as a large (∼1 mm diameter) blood vessel. In a second example, a smaller vessel (∼80 μm diameter) that is indistinguishable in the structural OCT image is fully visualized in 3-D using CDOCT.
Introduction: A recent ex-vivo study using micro-CT in patients with chronic obstructive pulmonary disease (COPD) showed that narrowing and disappearance of small conducting airways precedes the onset of emphysematous destruction in COPD. Until recently, the airway remodeling process could not be studied in detail in-vivo. In this study, we investigated the repeatability of navigating an Optical Coherence Tomography (OCT) catheter to image the same airways in smokers with and without COPD. Method: OCT imaging was performed by inserting the catheter through a sub-segmental airway to a small bronchiole. Three-dimensional OCT imaging of 5 cm of airway segments was obtained. The catheter was removed and reinsertion into the same airway was attempted. The number of airway generations and quantitative measurements of the airway wall area were investigated. Results: Sixty-three airways in 30 subjects were analyzed. Repeated insertion into the same airway was observed at 53.8 %, 92.3% and 70.8% of the time in the upper, middle and lower lobes respectively. The percentage differences of paired measurements of airway wall area between matched and unmatched airways in bronchioles were 5.8 ± 4.6 % and 7.3 ± 5.4 % respectively Conclusions: Repeated OCT imaging of airways is possible in the majority of cases except in the upper lobes. For airways that are not completely matched, some of the airway segments can still be used for comparison by careful alignment of the airway. OCT may be a useful method to study the remodeling process in small airways and the effect of therapeutic intervention.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.