Temperature variations in the NICMOS detectors arise from a variety of
thermal sources. These thermal variations lead to several image
artifacts which must be removed before making quantitative scientific
measurements from NICMOS data. Future instruments would do well to
minimize sources of thermal instabilities in their detectors. A related problem is the inability to directly measure detector temperature from bias due to the instability of the low-voltage power supply in NICMOS. Identifying ways to directly monitor detector temperatures would be an important benefit for future missions.
We describe the on-orbit performance of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the Hubble Space Telescope (HST) following the installation of the NICMOS Cooling System (NCS). NICMOS is operated at a higher temperature (~77 K) than in the previous observing 1997-1998 period (~62 K). Due to the higher operating temperature, the detector QE is higher, while the well depth is less. The spatial structure of the flat field response remained essentially unchanged. We will show the effects of operating at the higher temperature and present current NICMOS calibration images. In addition, we present an overview of on-orbit testing and report on the re-enabling of NICMOS.
We describe the on-orbit characterization of the HgCdTe detectors aboard NICMOS. The flat-field response is strongly wavelength dependent, and we show the effect of this on the photometric uncertainties in data, as well as the complications it introduces into calibration of slitless grism observations. We present the first rigorous treatment of the dark current as a function of exposure time for HgCdTe array detectors, and show that they consist of three independent components which we have fully characterized - a constant component which is the true dark current, an 'amplifier glow' component which results from operation of the four readout amplifiers situated near the detector corners and injects a spatially dependent signal each time the detector is non-destructively read out, and finally the 'shading', a component well known in HgCdTe detectors which we show is simply a pixel dependent bias change whose amplitude is a function of the time since the detector was last non-destructively read out. We show that with these three components fully characterized, we are able to generate 'synthetic' dark current images for calibration purposes which accurately predict the actual performance of the three flight detectors. In addition, we present linearity curves produced in ground testing before launch. Finally, we report a number of detector related anomalies which we have observed with NICMOS some of which have limited the observed sensitivity of the instrument, and which at the time of writing are still not fully understood.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.