The electric and thermal effects of optical thin film irradiated by Gaussian-pulsed laser are simulated with finite element method (FEM) based on the software ANSYS. The electric field intensity distribution of HfO2/SiO2 high reflective (HR) film is investigated. The transient heat-conduction model of the film is established for the calculation of temperature field of optical thin film coating. Simulation results show that, multilayer films are more prone to damage than single film, and the upper layer of HfO2 layer in the spot center may easily be damaged.
The intensity distribution of an initially plane wave incident on ceria in subsurface layer is calculated numerically with Finite-different time-domain (FDTD) solutions.The results show that the light intensity enhancement is caused by lens effect due to the high refractive index of ceria, and the surface damage characteristics of fused silica is very sensitive to location of ceria, ceria size and incident wavelength. The ceria located on the exit surface of fused silica generates electric field enhancements that are stronger than those on the entrance surface. The increasing of ceria size can lead to higher light intensity enhancement factor (LIEF) and the LIEFs can reach two orders of magnitude when the diameter of ceria is three times that of the incident wavelength. The light intensity enhancement caused by ceria with the same location and diameter decreases with the increasing of wavelength. As ceria on polished surfaces is randomly oriented, the probaility for large intensity enhancements to occur is high. The model may provide effective support for research on laser-induced damage and improvement of processing technology for fused silica.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.