Optical biomarkers of neonatal hypoxic ischemic (HI) brain injury can offer the advantage of continuous, cot-side assessment of the degree of injury; research thus far has focused on examining different optical measured brain physiological signals and feature combinations to achieve this. To maximize the breadth of physiological characteristics being taken into consideration, a multimodal optical platform has been developed, allowing unique physiological insights into brain injury. In this paper we present an assessment of severity of injury using a state-of-the-art hybrid broadband Near Infrared Spectrometer (bNIRS) and Diffusion Correlation Spectrometer (DCS) instrument called FLORENCE with a machine learning pipeline. We demonstrate in the preclinical neonatal model (the newborn piglet) that our approach can identify different HI insult severity (controls, mild, severe). We show that a machine learning pipeline based on k-means clustering can be used to differentiate between the controls and the HI piglets with an accuracy of 78%, the mild severity insult piglets from the severe insult piglets with an accuracy of 90% and can also differentiate the 3 piglet groups with an accuracy of 80%. So, this analytics pipeline demonstrates how optical data from multiple instruments can be processed towards markers of brain health.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.