The HabEx mission concept is intended to directly image planetary systems around nearby stars, and to perform a wide range of general astrophysics and solar system observations. The baseline HabEx design would use both a coronagraph and a starshade for exoplanet discovery and characterization. We describe a lower-cost alternative HabEx mission design, which would only use a starshade for exoplanet science. The starshade would provide excellent exoplanet science performance, but for a smaller number of detected exoplanets of all types, including exoEarth candidates, and a smaller fraction of exoplanets with measured orbits. The full suite of HabEx general astrophysics and solar-system science would be supported.
NASA is exploring telescope and mirror technology options to meet the demanding science goals of the proposed HabEx space telescope. A key priority for the HabEx mission concept would be to leverage affordable telescope solutions that can meet challenging telescope performance requirements with a demanding program timeline. The baseline approach for HabEx is to use an unobscured, monolithic primary mirror with a coronagraph to optimize system performance. NASA is performing an initial study to investigate the feasibility of a HabEx Lite concept which would not leverage a coronagraph and would therefore, have lower exoEarth yield as a consequence, but could provide system mass, cost, and schedule advantages. The HabEx Lite concept leverages replicated, ULE® mirror segments to provide an attractive, alternative telescope architecture to meet the HabEx threshold mission needs. We present the initial mirror design and performance assessment for the HabEx Lite concept.
The HabEx mission concept is intended to directly image planetary systems around nearby stars, and to perform a wide range of general astrophysics and solar system observations. Its main goal is the discovery and characterization of Earthlike exoplanets through high-contrast imaging and spectroscopy. The baseline HabEx concept would use both a coronagraph and a starshade for exoplanet science. We describe an alternative, “HabEx Lite” concept, which would use a starshade (only) for exoplanet science. The benefit is lower cost: by deleting the complex coronagraph instrument; by lowering observatory mass; by relaxing tolerances and stability requirements; by permitting use of a compact on-axis telescope design; by use of a smaller launch vehicle. The scientific penalty of this lower cost option is a smaller number of detected exoplanets of all types, including exoEarth candidates, and a smaller fraction of exoplanets with measured orbits. Our approach uses a non-deployed segmented primary mirror, whose manufacture is within current capabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.