Each year, about 30% of all newly diagnosed cancer cases in women worldwide are breast cancers [1]. One of the most common techniques for breast cancer diagnosis is mammography. However, this technique provides limited functional information regarding breast tissue morphology. In cases of suspected malignancy invasive techniques such as biopsy are implemented.
In this work an optical deep tissue imaging technique called ultrasound optical tomography (UOT) which combines laser light and ultrasound is implemented for a non-invasive lesion (tumour) characterization in breast tissue.
The experiments were performed using 794 nm laser wavelength, 6 MHz ultrasound frequency and a narrowband spectral filter material, Tm3+:LiNbO3. The measurements were carried out in 5 cm thick agar phantoms using a range of tumor mimicking inclusions of 3 different sizes.
This work is the first deep tissue imaging demonstration using UOT at tissue relevant wavelengths. Current results indicate that the UOT technique can become an important and valuable tool for lesion characterization in breast tissue.
In this paper we show the analysis of Thulium Doped Fibre Amplifier(TDFA) gain dependence on pump laser wavelength and thulium doped fibre length. Thulium doped fibres of lengths varying from 0.5m to 3m are pumped with 785nm and 1550nm lasers in single and dual pumping schemes. Small signal gain up to 16dB was achieved at 2μm for a low pump power of 150mW. A potential wide amplifications bandwidth ranging from 1680nm to 2025nm is observed in the Amplified Spontaneous Emission(ASE) spectrum.
A regrowth-free single-mode laser that is made using standard UV photolithography is reported. The laser achieves a single-mode side-mode suppression ratio of 37 dB, linewidth of 450 kHz, and tunes across 2.9 nm and is suitable for monolithic integration as a distributed feedback replacement, due to a large free spectral range of 60 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.