KEYWORDS: Digital holography, 3D image reconstruction, Microscopes, Holograms, Holography, Phase shifts, 3D metrology, 3D image processing, Microorganisms, Polarization
We report the three-dimensional (3D) trajectory of a Volvox moving in water was recorded by parallel phase-shifting digital holographic microscope providing 10X magnification. The recording frame rate, the shutter speed, and the total recording time were 1000 fps, 0.25 ms, and 2.1 s, respectively. In the reconstructed phase image of the Volvox, the shape of the Volvox is regarded as a circle. The lateral coordinates of the Volvox were determined as the center of the circle. The depth coordinates of the Volvox were determined as the propagation distance where the edge of the Volvox in the reconstructed amplitude image was clearest while the propagation distance was varied. We successfully demonstrated the 3D tracking of curvedly moving Volvox.
We present a diffuse optical imaging system with structured illumination and integrated detection for spatial characterization of scattering and absorption properties of turbid media. It is based on the application of single- pixel imaging techniques with integrating spheres, which allows us to develop a spatial resolved version of the Kubelka-Munk method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.