Recently, x-ray computed tomography (CT) systems were developed dramatically; e.g. a multi-detector-row CT or a 4-dimensional CT, but it has been expressed anxiety that a patient dose is increased. Analysis of x-ray spectrum is important for quality assurance and quality control of radiographic systems to estimate a quality of an imaging system and to decrease a patient dose. The aim of this study is to measure the x-ray spectra of CT system under clinical conditions using a high resolution Schottky CdTe detector. When measuring diagnostic x-ray spectra, the long distance from the x-ray source to the detector is requested for reducing a number of photons detected per unit time to prevent pile-up of the detector. However, that is very difficult to set up the long source-to-detector distance in a gantry of a CT unit. For resolving this problem, the Compton spectroscopy is very suitable. Using this method, a number of photons detected per unit time can be reduced by detecting the scattered x-ray photons. If the 90° scattered photons can be detected, the energy correction and reconstruction of spectra can be calculated easily by use of the Klein-Nishina formula. So we attempt to acquire the primary x-ray spectra in the gantry of the CT unit by using Compton spectroscopy under a clinical (tube-rotating) condition. Moreover, to estimate the variation of x-ray spectra owe to changing position in the gantry, we measured the x-ray spectra and exposure doses at various points in the gantry.
The purpose of this study is to investigate the influence of the scattered x rays on the signal sharpness on the radiographs produced by using a computed radiography (CR) system by measuring the spatial frequency spectra of the signal image. By using a 0.1 mm slit on the polymethyl methacrylate (PMMA) for thicknesses of 0.5 cm to 20.5 cm, the slit images were acquired as a signal by use of imaging plates at tube voltages of 50 kV to 120 kV. The relative exposure profiles for the slit images were Fourier transformed to obtain the spatial frequency spectra. For comparison of the frequency spectra with and without the scattered x rays, we defined the scattered x-ray influence factor (SIF) representing the magnitude of the influence of the scattered x rays on the spatial frequency spectra of the signal image. To investigate the contribution of the primary and scatter components to the degradation of the signal sharpness, we proposed a method for separating the spatial frequency spectrum of the signal image into the primary and scatter components. By obtaining the SIF, we found that, for very lower frequencies (less than about 0.3 mm^-1), the shape of the spatial frequency spectra of the signal image depends on the scattered x rays, but, for higher frequencies, hardly depends. As a result of the separation of the frequency spectra of the signal image, we found that the contribution of the scatter component for very lower frequencies (less than about 0.2 mm^-1) to the total spectrum of the signal image was not negligible and became greater as the scattering material thickness and the tube voltage increased. On the contrary, for higher frequencies, the primary component was dominant compared with the scatter component for all thicknesses and tube voltages.
The presampling modulation transfer function (MTF) can be determined by the edge spread function in which the sampling interval is narrower than the pixel-to-pixel interval from slight angled edge image. It is important that the precision of the presampling MTF depend on the precision of the edge angle. In this study, we have developed the automated method, which includes a precise edge angle determination process for the measurement of the presampling MTF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.