The understanding of nanoscale biological processes is limited by the level of details we can achieve when observing their dynamics. Addressing molecules of interest using fluorescent labels is the most common contrast mechanism in biological nano-imaging. However, the complex photophysics of fluorescent labels limits the localization precision as well as observation times in practical experiments. As an alternative to fluorescence-based microscopy interferometric scattering microscopy (iSCAT) was recently introduced. It is an optical microscopy technique allowing to detect and track nanoscale objects with sub-nanometre localization precision. The basic concept of this technique is the interference of light scattered on the particle with a reference wave light partially reflected at the microscopic slide. Recent advancements pushed the sensitivity and high-speed tracking down to a level of a single unlabelled protein by balancing the amplitudes of scattering and reference waves. This is often achieved by optimizing the reference wave, e.g. via placing a partially transparent mask near the back focal plane of a high numerical aperture microscope. In this contribution we introduce and demonstrate an innovative layout of the iSCAT microscope with optimized reference wave and minimized interferometric artefacts. We benchmark the detection capabilities of the new layout using series of extremely small spherical gold nanoparticles and demonstrate possible applications of the novel detection scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.